PLURISUBHARMONIC FUNCTIONS THAT ARE PIECEWISE PLURIHARMONIC

R. Bögvad

Abstract: Given a finite number of pluriharmonic functions H_i , i = 1, ...k in n complex variables, one may form their maximum and obtain a plurisubharmonic function Ψ . It will be piecewise pluriharmonic in the sense that

$$\Psi = \sum_{i=1}^{k} H_i \chi_i,$$

where χ_i is the characteristic function of the open set where $\Psi = H_i$.

I will give a local criterion on a plurisubharmonic function to be such a maximum, or more general to be piecewise plurisubharmonic. This criterion is adapted to a situation where only indirect information is known about Ψ . An example (taken from Hans Rullgrd): suppose that n = 1 and p(z) is a generic polynomial with zeroes α_i . If $p(\frac{d\Psi}{dz}) = 0$ then locally near a point p, one has $\Psi(z) = Max\{2\text{Re}\alpha_i z, i \in I\}$ for some set $I \subset [1, ..., n]$ (which depends on p).

I will also sketch some applications to asymptotic behaviour of zeroes of hypergeometric polynomials, in one variable and similar conjectures for several variables.

This builds on joint work with Jan-Erik Bjrk, Julius Borcea, and Boris Shapiro.