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Polymer Model

A random walk in a random environment:

Ï A polymer path x= (xt;t= 0, ...,n) is a nearest neighbour

up-right path in Z
2
+ of length n.

Ï The random environment ω= {ω(i,j) : (i,j) ∈Z
2
+} sequence of real

i.i.d random variables with probability distribution P.



The point-to-line polymer measure of a path of length n is

Qω
n(x)=

1

Zω
n

exp
{

β
n
∑

t=1

ω(xt)
}

.

with Zω
n the sum over all up-right paths x starting at x0 = (0,0).

Question : For typical environment ω, what is the behaviour of the

polymer of large size n→∞ ?

Ï β= 0, we obtain a simple random walk.

Ï If β→∞, Qn concentrates on the path(s) that maximize
∑

ω(xk) and we obtain the last passage percolation model.



KPZ universality class

Recent developments on understanding models in KPZ

universality class ( Kardar, Parisi and Zhang 1986) which share

the same scaling, statistics and limits objects which is related to

the Tracy-Widom distributions.

KPZ class covers large random matrices, interacting particle

systems ( ASEP, TASEP,...), last passage percolation.

A few explicitly solvable polymer models:

Ï KPZ equation (Quastel ’10, Hairer ’13).

Ï Brownian semi-discrete polymer (O’Connell-Yor ’03).

Ï Log-gamma polymer (Seppalainen ’12), Strict-weak polymer

(Corwin,Seppalainen,Shen ’14), Beta-polymer ( Barraquand,

Corwin’15).



Log gamma model

Ï We define the multiplicative weights as

Yi,j = eω(i,j), (i,j) ∈Z+
2

Ï We fix β= 1, the point-to-line partition function is

Zn =
∑

x.∈Πn

n
∏

k=1

Yxk
,

Define Log-Gamma polymer with parameter µ> 0, without

boundary conditions

Y−1
i,j ∼Γ(µ)−1xµ−1e−xdx x> 0.



Log Gamma polymer with boundary conditions

Ym,nUm,n

Vm,n

Ui,0

V0,j

Define : Ui,0 =Yi,0 and V0,j =Y0,j.

Model b.c.(θ): Let µ> 0 be fixed. For θ ∈ (0,µ), we will denote by

b.c.(θ) the model with

Ï U−1
i,0

∼Gamma(θ,1)

Ï V−1
0,j

∼Gamma(µ−θ,1)

Ï Y−1
i,j

∼Gamma(µ,1)



Log-gamma polymer is in KPZ class

Seppalainen ’12 discovered the stationarity property of this model

with boundary conditions which makes it explicitly solvable:

Ï He obtains the value of the free energy

n−1 lnZn →−Ψ0(µ/2), Ψ0 =Γ
′/Γ

and proves that the volume and wandering exponents for

fluctuations are give by

χ= 1/3, ξ= 2/3

Ï Later, explicit formula of the Laplace transform of the

partition function at finite size is discovered by

Corwin-O’Connell-Seppalainen-Zygouras ’14 which implies

GUE Tracy-Widom fluctuations for log(Zn,n) at scale n1/3 (

Borodin-Corwin-Remenik ’13).



Localization in dimension 1

In order to analyse the localization phenomenon, we consider the

largest probability for ending at a specific point:

In =max
x∈Zd

Qω
n−1{xn = x},

Carmona and Hu [2002] and Comets et al[2003] showed that, by

using martingale methods, in dimension d= 1, there is a constant

c0 = c0(β)> 0 such that the event

limsup
n→∞

In ≥ c0

has P-probability one. This property is called endpoint

localization.



What we will prove

The endpoint distribution under the quenched measure.

Qω
n

{

xn = (k,n−k)
}

=
Zk,n−k

Zn
, k= 0, . . . ,n.

For each n, denote by

ln = argmax{Zk,n−k,k≤n},

the location maximizing the above probability, and call it the

"favourite endpoint". We will study the endpoint measure around

the favourite point.



Proposition (Comets, Nguyen 2014)

Consider the model b.c.(θ) with θ ∈ (0,µ). Define the end-point

distribution ξ̃(n) centered around its mode, by

ξ̃(n) = (ξ̃(n)

k
;k ∈Z), with ξ̃(n)

k
=Qω

n

{

xn = (ln+k,n− ln −k)
}

.

Thus, ξ̃(n) is a random element of the set M1 of probability

measures on Z. Then, we have convergence in law

ξ̃(n) L
−→ ξ in the space (M1,‖ ·‖TV ),

where ‖µ−ν‖TV =
∑

k |µ(k)−ν(k)| is the total variation distance.



Remarks:

Ï The definition of ξk is given as a functional of the random

walk conditioned to stay positive on Z
+ and conditioned to

stay strictly positive on Z
−.

Ï The formula of ξ also depends on the case if θ =µ/2 (

equilibrium case) or θ 6=µ/2 (non-equilibrium). In this talk, I

will consider the more interesting case θ =µ/2.



Consequences

A few consequences:

Ï Mass of favourite endpoint converges

In =max
x

Qω
n−1{xn = x}

L
−→max{(ξ(k)+ξ(k+1))/2; k ∈Z}> 0.

Ï Tightness of the endpoint : Letting
−→
ln = (ln,n− ln),

lim
K→∞

limsup
n→∞

Qω
n

[

‖xn−
−→
ln‖≥K

]

= 0

Ï Scaling limit of endpoint: By Donsker’s invariance principle,

when θ =µ/2 we have

ln

n

L
−→ arg min

t∈[0,1]Wt

,

the arcsine law.



Stationary structure

Ym,nUm,n

Vm,n

Ui,0

V0,j

Recall the point-to-point partition function Zm,n

Zm,n =
∑

x
exp

{

β
m+n
∑

t=1

ω(xt)
}

.

Compute Zm,n for all (m,n) ∈Z
2
+ and then define

Um,n =
Zm,n

Zm−1,n
, Vm,n =

Zm,n

Zm,n−1



The Burke’s property of this model

Proposition (Seppalainen 2012)

Along any down-right path, the variables U,V ′s are mutually

independent with marginal distributions

U−1 ∼Gamma(θ,1) V−1 ∼Gamma(µ−θ,1)



Sketch of Proof.

Recall that θ =µ/2. Define for each 1≤ k≤n, the random variable

Xn
k

Xn
k
=− log(

Zk,n−k

Zk−1,n−k+1
)=− log(

Uk,n−k

Vk−1,n−k+1
),

and Xn
0
= 0. By the stationary structure, for each n, (Xn

k
)1≤k≤n are

i.i.d random variables with mean 0, and satisfy

Zk,n−k

Z0,n
= exp(−

k
∑

i=0

Xn
i ).

Defining Sn
k
=

∑k
i=1

Xn
i

a random walk, then

Qω
n{xn = (k,n−k)}=

Zk,n−k
∑n

i=0
Zi,n−i

=
1

∑n
i=0

exp(−(Sn
i
−Sn

k
))



Since we are only interested in the law of Qω
n{xn = (k,n−k)}, we

drop the superscript n in Sn
n,Xn

i
, ...

Sn =
n
∑

i=1

Xi,

and we define

ξn
k
=

1
∑n

i=0
exp(−(Si −Sk))

.

Then one can check that for every n:

(ξn
k

)0≤k≤n
L
=

(

Qω
n{xn = (k,n−k)}

)

0≤k≤n,



Then we only need to prove that:

{ξn
ℓn+k

}k∈Z
L
−→ {ξk}k∈Z , in the ℓ1−norm,

with

ℓn = argmin
k≤n

Sk.

We show that the mass of the favourite point is converging :

ξn
ℓn

=

(

n
∑

i=0

e−(Si−Sℓn )

)−1
L
−→ ξ0 , in the ℓ1−norm,

The direct approach is to understand the growth of the random

walk seen from its locals minima. This coupling is also the main

tool to study the one dimension recurrent walk in random

environment, discovered by Sinai and studied by Golosov.



Random walk conditioned to stay positive

Consider the random walk S= (Sk,k≥ 0) in (16) has mean 0.

Define the event that the random walk stay non negative

Λ= {Sk ≥ 0 for all k≥ 0}.

we can approximate Λ with some other event Λn:

Λn = {Sk ≥ 0,∀ 0≤ k≤n}.

And we would like to understand limn→∞ E(f (S)|Λn).



Proposition (Bertoin 1994)

For a bounded function f (S)= f (S1, . . . ,Sk),

lim
n→∞

E(f (S)|Λn)= E(f (S↑)).

where S↑ is a homogeneous Markov chain on the nonnegative real

numbers with transition function:

pV (x,y)=
V(y)

V(x)
p(x,y)1{y≥0}.

and V(x) is a renewal function

V(x)= 1+E(
σ(0)−1

∑

i=1

1{−x≤Si}
),

where

σ(0)=min{k≥ 1 : Sk ≥ 0}.

The process S↑ is known as the random walk conditioned to be

positive.



Similarly for the reflected random walk −S, we can define the

process S↓ and obtain a direct consequence:

Corollary

For fixed K, one has the following convergence results when n→∞:

(Sℓn+k−Sℓn )1≤k≤K
L
−→ (S

↑

k
)1≤k≤K ,

(Sℓn+k −Sℓn)−1≥k≥−K
L
−→ (S↓

k
)1≤k≤K ,

(

K
∑

k=−K

e−(Sk+ℓn−Sℓn )

)−1
L
−→

(

1+
K
∑

k=1

e−S↑

k +
K
∑

k=1

e−S↓

k

)−1

.



At this point, we can get the explicit formula for ξ0:

Lemma

For n→∞,

ξn
ℓn

=

(

n
∑

i=0

e−(Si−Sℓn )

)−1
L
−→ ξ0 =

(

1+
∞
∑

i=1

e−S↑

i +
∞
∑

i=1

e−S↓

i

)−1

.

Now to control the full (unbounded) sum, we use a consequence of

a result by Ritter ’81:

lim
δ→0

P[Sk+ln −Sln > δk1/2−ǫ for all k≤n− ln]= 1

and we get the result.



For general value of k, we have :

ξk =







































exp(−S↑

k
)

1+
∞
∑

i=1

exp(−S↑

i
)+

∞
∑

i=1

exp(−S↓

i
)

, if k≥ 0

exp(−S↓

k
)

1+
∞
∑

i=1

exp(−S↑

i
)+

∞
∑

i=1

exp(−S↓

i
)

, if k< 0



The case without boundary conditions

In this case, our method does not work and we need other

approach.

Ï Macdonald process

Ï Combinatoric using Geometric RSK correspondence,

Whittaker functions



For multipoint problem, we find formally the Airy process as limit

[Nguyen, Zygouras’15]

Claim

Let Z(m1,n1),Z(m2 ,n2) be point-to-point partition functions of a

(0,γ)−log-gamma polymer with (m1,n1),(m2,n2) determined by

(m1,n1)= (N− t1N2/3,N + t1N2/3) and (m2,n2)= (N+ t2N2/3,N − t2N2/3),

Then
(

logZ(m1,n1) −Nfγ

(c
γ

1
)−1 N1/3

,
logZ(m2,n2)−Nfγ

(c
γ

1
)−1 N1/3

)

(d)
−−−−→
N→∞

(

Ai(−c
γ

3
t1)−c

γ

2
t2
1, Ai(c

γ

3
t2)−c

γ

2
t2
2

)

.
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