Hydrodynamic limits for the velocity-flip model

Marielle Simon, École Normale Supérieure de Lyon

Advisor: Cédric Bernardin

Rouen, Rencontres de Probabilités 2013

1 Microscopic level: System of N particles, interacting and evolving in time $(N \sim 10^{23})$.

1 Microscopic level: System of N particles, interacting and evolving in time $(N \sim 10^{23})$.

2 Macroscopic level:

• Microscopic level: System of N particles, interacting and evolving in time $(N \sim 10^{23})$.

2 Macroscopic level:

- \triangleright Equations (PDE's) on thermodynamical caracteristics: pressure, temperature T(x, t),...
- \triangleright Transport coefficients: D(T) (diffusion).

1 Microscopic level: System of N particles, interacting and evolving in time $(N \sim 10^{23})$.

2 Macroscopic level:

- \triangleright Equations (PDE's) on thermodynamical caracteristics: pressure, temperature T(x, t),...
- \triangleright Transport coefficients: D(T) (diffusion).

$$\frac{\partial T}{\partial t} = -\frac{\partial}{\partial x} \left[D(T) \frac{\partial T}{\partial x} \right]$$

Problem

Deriving *macroscopic laws* from a *microscopic description* of the system dynamics.

Problem

Deriving *macroscopic laws* from a *microscopic description* of the system dynamics.

• Two scalings:

 \triangleright in space (discrete \rightarrow continuous)

 \triangleright in time (diffusive behavior = diffusive scale tN^2)

Problem

Deriving *macroscopic laws* from a *microscopic description* of the system dynamics.

• Two scalings:

 \triangleright in space (discrete \rightarrow continuous)

 \triangleright in time (diffusive behavior = diffusive scale tN^2)

• Non-equilibrium: initially, *local equilibrium* holds.

Problem

Deriving *macroscopic laws* from a *microscopic description* of the system dynamics.

• Two scalings:

- \triangleright in space (discrete \rightarrow continuous)
- \triangleright in time (diffusive behavior = diffusive scale tN^2)
- Non-equilibrium: initially, *local equilibrium* holds.

Main idea

Hydrodynamic limits = Propagation of local equilibrium

Model for heat conduction

• Chain of N harmonic coupled oscillators on the torus

$$\mathbb{T}_N = \{0, 1, ..., N - 1\}$$

- p_x : momentum of particle x,
- r_x : distance between the particle x and x + 1.

Model for heat conduction

• Chain of N harmonic coupled oscillators on the torus

$$\mathbb{T}_N = \{0, 1, ..., N - 1\}$$

- p_x : momentum of particle x,
- r_x : distance between the particle x and x + 1.
- A typical configuration is $\omega = (\mathbf{r}, \mathbf{p}) \in (\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$

$$\mathbf{r} = (r_x)_{x \in \mathbb{T}_N}, \qquad \mathbf{p} = (p_x)_{x \in \mathbb{T}_N}.$$

- p_x : momentum of particle x,
- r_x : distance between the particle x and x + 1.
- An Hamiltonian system described by

$$\mathcal{H} = \sum_{x \in \mathbb{T}_N} \frac{p_x^2 + r_x^2}{2} = \sum_{x \in \mathbb{T}_N} e_x.$$

- p_x : momentum of particle x,
- r_x : distance between the particle x and x + 1.
- An Hamiltonian system described by

$$\mathcal{H} = \sum_{x \in \mathbb{T}_N} \frac{p_x^2 + r_x^2}{2} = \sum_{x \in \mathbb{T}_N} e_x.$$

• Newton's equations:

$$\begin{cases} \frac{dr_x}{dt} = p_{x+1} - p_x\\ \frac{dp_x}{dt} = r_x - r_{x-1} \end{cases}$$

- p_x : momentum of particle x,
- r_x : distance between the particle x and x + 1.
- An Hamiltonian system described by

$$\mathcal{H} = \sum_{x \in \mathbb{T}_N} \frac{p_x^2 + r_x^2}{2} = \sum_{x \in \mathbb{T}_N} e_x.$$

• Newton's equations:

$$\begin{cases} \frac{dr_x}{dt} = p_{x+1} - p_x\\ \frac{dp_x}{dt} = r_x - r_{x-1} \end{cases}$$

• Conserved quantities:

$$\sum_{x\in\mathbb{T}_N}r_x \qquad \sum_{x\in\mathbb{T}_N}p_x \qquad \sum_{x\in\mathbb{T}_N}e_x$$

Configurations: $\omega_x(t) := (p_x(t), r_x(t))$ in $\Omega_N := (\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$.

Configurations: $\omega_x(t) := (p_x(t), r_x(t))$ in $\Omega_N := (\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$.

• Deterministic evolution: Newton's equations

$$\frac{d\omega}{dt} = F(\omega(t))$$

Configurations: $\omega_x(t) := (p_x(t), r_x(t))$ in $\Omega_N := (\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$.

• Deterministic evolution: Newton's equations

$$\frac{d\omega}{dt} = F(\omega(t))$$

• Generator: for all $f: \Omega_N \to \mathbb{R}$, define $\mathcal{A}_N(f): \Omega_N \to \mathbb{R}$ by

$$\mathcal{A}_N(f)(\omega) = F(\omega) \cdot \frac{\partial f}{\partial \omega}$$

Configurations: $\omega_x(t) := (p_x(t), r_x(t))$ in $\Omega_N := (\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$.

• Deterministic evolution: Newton's equations

$$\frac{d\omega}{dt} = F(\omega(t))$$

• Generator: for all $f: \Omega_N \to \mathbb{R}$, define $\mathcal{A}_N(f): \Omega_N \to \mathbb{R}$ by

$$\mathcal{A}_N(f)(\omega) = F(\omega) \cdot \frac{\partial f}{\partial \omega}$$

Explicitly,

$$\mathcal{A}_N(f) = \sum_{x \in \mathbb{T}_N} (p_{x+1} - p_x) \cdot \frac{\partial f}{\partial r_x} + (r_x - r_{x-1}) \cdot \frac{\partial f}{\partial p_x}$$

• We add a stochastic noise \Rightarrow provides ergodicity.

• We add a stochastic noise \Rightarrow provides ergodicity.

Each particle x waits independently a random Poissonian time and then flips p_x into $-p_x$.

The new configuration is denoted by $(\mathbf{r}, \mathbf{p}^x)$.

• The **generator** of the dynamics is:

$$\mathcal{L}_N = \mathcal{A}_N + \gamma S_N,$$

where

$$\mathcal{A}_N(f) = \sum_{x \in \mathbb{T}_N} (p_{x+1} - p_x) \cdot \frac{\partial f}{\partial r_x} + (r_x - r_{x-1}) \cdot \frac{\partial f}{\partial p_x},$$
$$\mathcal{S}_N(f)(\mathbf{r}, \mathbf{p}) = \frac{1}{2} \sum_{x \in \mathbb{T}_N} [f(\mathbf{r}, \mathbf{p}^x) - f(\mathbf{r}, \mathbf{p})].$$

• Two conserved quantities:

• Two conserved quantities:

$$\sum_{x \in \mathbb{T}_N} r_x: \text{ the total deformation},$$

• Two conserved quantities:

$$\sum_{x \in \mathbb{T}_N} r_x$$
: the total deformation, $\sum_{x \in \mathbb{T}_N} e_x$: the total energy

• Two conserved quantities:

$$\sum_{x\in\mathbb{T}_N}r_x$$
: the total deformation, $\sum_{x\in\mathbb{T}_N}e_x$: the total energy

• Family of invariant measures: the Gibbs states

$$\mu_{\beta,\lambda}^N(d\mathbf{r}, d\mathbf{p}) = \prod_{x \in \mathbb{T}_N} \frac{e^{-\beta e_x - \lambda r_x}}{Z(\beta, \lambda)} dr_x dp_x.$$

- $\triangleright \quad \textbf{Chemical potentials:} \ \beta > 0, \ \lambda \in \mathbb{R},$
- \triangleright Hilbert space: $\mathbb{L}^2(\mu_{\beta,\lambda}^N)$.

Ergodicity of the infinite dynamics

 \Rightarrow No other conserved quantities in a suitable sense:

Ergodicity of the infinite dynamics

 \Rightarrow No other conserved quantities in a suitable sense:

Theorem 1.1 [Fritz, Funaki, Lebowitz, 1994]

If ν is a probability measure on $(\mathbb{R}\times\mathbb{R})^{\mathbb{Z}}$ which

- 1 has finite entropy density,
- 2 is translation invariant,
- **3** is stationary for the infinite dynamics,

then ν is a convex combination of (infinite) Gibbs states.

The Gibbs local equilibrium measures associated to the profiles **r** and **e** defined on $\mathbb{T} = [0, 1]$ are

$$\mu_{\beta(\cdot),\lambda(\cdot)}^{N}(d\mathbf{r},d\mathbf{p}) = \prod_{x\in\mathbb{T}_{N}} \frac{\exp\left(-\beta\left(\frac{x}{N}\right)e_{x} - \lambda\left(\frac{x}{N}\right)r_{x}\right)}{Z_{\beta(\cdot),\lambda(\cdot)}} dr_{x}dp_{x},$$

The **Gibbs local equilibrium measures** associated to the profiles **r** and **e** defined on $\mathbb{T} = [0, 1]$ are

$$\mu_{\beta(\cdot),\lambda(\cdot)}^{N}(d\mathbf{r}, d\mathbf{p}) = \prod_{x \in \mathbb{T}_{N}} \frac{\exp\left(-\beta\left(\frac{x}{N}\right)e_{x} - \lambda\left(\frac{x}{N}\right)r_{x}\right)}{Z_{\beta(\cdot),\lambda(\cdot)}} dr_{x} dp_{x},$$

where $\beta(\cdot)$ and $\lambda(\cdot)$ are the two chemical potential profiles related to $\mathbf{r}(\cdot)$ and $\mathbf{e}(\cdot)$ by the thermodynamical relations:

$$\begin{cases} \mathbf{e} = \frac{1}{\beta} + \frac{\lambda^2}{2\beta^2}, \\ \mathbf{r} = -\frac{\lambda}{\beta}. \end{cases}$$

- Initially,
 - \triangleright a **local equilibrium** μ_0^N on $(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$, which is associated to a deformation profile \mathbf{r}_0 and an energy profile \mathbf{e}_0 on the torus $\mathbb{T} = [0, 1]$:

- Initially,
 - ▷ a local equilibrium μ_0^N on $(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_N}$, which is associated to a deformation profile \mathbf{r}_0 and an energy profile \mathbf{e}_0 on the torus $\mathbb{T} = [0, 1]$:

For any continuous G on \mathbb{T} , $\delta > 0$,

$$\lim_{N \to \infty} \mu_0^N \left[\left| \frac{1}{N} \sum_{x \in \mathbb{T}_N} G\left(\frac{x}{N}\right) r_x - \int_{\mathbb{T}} G(v) \mathbf{r}_0(v) dv \right| > \delta \right] = 0.$$
$$\lim_{N \to \infty} \mu_0^N \left[\left| \frac{1}{N} \sum_{x \in \mathbb{T}_N} G\left(\frac{x}{N}\right) e_x - \int_{\mathbb{T}} G(v) \mathbf{e}_0(v) dv \right| > \delta \right] = 0.$$

Diffusive scaling

• We study the process in the **diffusive scale**, at time tN^2 :

 \triangleright the new generator is $N^2 \mathcal{L}_N$,

 \triangleright the law of the process is denoted by μ_t^N .

Diffusive scaling

• We study the process in the **diffusive scale**, at time tN^2 :

 \triangleright the new generator is $N^2 \mathcal{L}_N$,

 \triangleright the law of the process is denoted by μ_t^N .

• The **relative entropy** of the probability law μ with respect to the probability law ν is

$$H(\mu|\nu) = \sup_{f} \left\{ \int_{X} f \ d\mu - \log\left(\int_{X} e^{f} \ d\nu\right) \right\}.$$

(the supremum is carried over all bounded functions f)

Theorem 2.1.

We suppose that μ_0^N is a Gibbs local equilibrium associated to the profiles \mathbf{e}_0 and \mathbf{r}_0 :

$$\mu_0^N = \mu_{\beta_0(\cdot),\lambda_0(\cdot)}^N.$$

Then, μ_t^N is *close* to the Gibbs local equilibrium associated to the profiles $\mathbf{e}(t, \cdot)$ and $\mathbf{r}(t, \cdot)$ defined on $\mathbb{R}_+ \times \mathbb{T}$ and solutions of

$$\begin{cases} \frac{\partial \mathbf{r}}{\partial t} = \frac{1}{\gamma} \cdot \frac{\partial^2 \mathbf{r}}{\partial q^2}, \\ \frac{\partial \mathbf{e}}{\partial t} = \frac{1}{2\gamma} \cdot \frac{\partial^2}{\partial q^2} \left(\mathbf{e} + \frac{\mathbf{r}^2}{2} \right), \end{cases} \begin{cases} \mathbf{r}(0, q) = \mathbf{r}_0(q), \\ \mathbf{e}(0, q) = \mathbf{e}_0(q), \end{cases}$$

Theorem 2.1.

We suppose that μ_0^N is a Gibbs local equilibrium associated to the profiles \mathbf{e}_0 and \mathbf{r}_0 :

$$\mu_0^N = \mu_{\beta_0(\cdot),\lambda_0(\cdot)}^N.$$

Then, μ_t^N is *close* to the Gibbs local equilibrium associated to the profiles $\mathbf{e}(t, \cdot)$ and $\mathbf{r}(t, \cdot)$ defined on $\mathbb{R}_+ \times \mathbb{T}$ and solutions of

$$\begin{cases} \frac{\partial \mathbf{r}}{\partial t} = \frac{1}{\gamma} \cdot \frac{\partial^2 \mathbf{r}}{\partial q^2}, \\ \frac{\partial \mathbf{e}}{\partial t} = \frac{1}{2\gamma} \cdot \frac{\partial^2}{\partial q^2} \left(\mathbf{e} + \frac{\mathbf{r}^2}{2} \right), \end{cases} \begin{cases} \mathbf{r}(0, q) = \mathbf{r}_0(q), \\ \mathbf{e}(0, q) = \mathbf{e}_0(q), \end{cases}$$

in the sense:

$$H\left(\mu_t^N | \mu_{\beta(t,\cdot),\lambda(t,\cdot)}^N\right) = o(N)$$

Remark

• Conclusion
$$H_N(t) := H\left(\mu_t^N | \mu_{\beta(t,\cdot),\lambda(t,\cdot)}^N\right) = o(N)$$
 implies:

Hydrodynamic limit

For any continuous G on \mathbb{T} , "any" local function φ , and $\delta > 0$,

$$u_t^N \left[\left| \frac{1}{N} \sum_x G\left(\frac{x}{N}\right) \tau_x \varphi - \int_{\mathbb{T}} G(y) \ \tilde{\varphi}(\mathbf{e}(t,y), \mathbf{r}(t,y)) dy \right| > \delta \right]$$
$$\xrightarrow[N \to \infty]{} 0,$$

where $\tilde{\varphi}$ is the grand-canonical expectation of φ (under $\mu_{\beta,\lambda}$).

Remark

• Conclusion
$$H_N(t) := H\left(\mu_t^N | \mu_{\beta(t,\cdot),\lambda(t,\cdot)}^N\right) = o(N)$$
 implies:

Hydrodynamic limit

For any continuous G on \mathbb{T} , "any" local function φ , and $\delta > 0$,

$$u_t^N \left[\left| \frac{1}{N} \sum_x G\left(\frac{x}{N}\right) \tau_x \varphi - \int_{\mathbb{T}} G(y) \; \tilde{\varphi}(\mathbf{e}(t,y), \mathbf{r}(t,y)) dy \right| > \delta \right]$$
$$\xrightarrow[N \to \infty]{} 0,$$

where $\tilde{\varphi}$ is the grand-canonical expectation of φ (under $\mu_{\beta,\lambda}$).

• Key ingredient is **entropy inequality**: for all $\alpha > 0$,

$$\int g \ d\mu_t^N \leqslant \frac{H_N(t)}{\alpha} + \frac{1}{\alpha} \log \left(\int e^{\alpha g} \ d\mu_{\beta(t,\cdot),\lambda(t,\cdot)}^N \right)$$

What are the main issues?

1 Non-gradient system:

$$\frac{de_x}{dt} = [p_{x+2}r_{x+1} - p_{x+1}r_x](t) \text{ but } p_{x+1}r_x(t) \text{ is not a gradient.}$$

 \Rightarrow need to compute the "fluctuation-dissipation" equations.

What are the main issues?

1 Non-gradient system:

$$\frac{de_x}{dt} = [p_{x+2}r_{x+1} - p_{x+1}r_x](t) \text{ but } p_{x+1}r_x(t) \text{ is not a gradient.}$$

$$\Rightarrow need to compute the "fluctuation-dissipation" equations.$$

② Second order approximations for the relative entropy:
 ⇒ need to correct the local Gibbs equilibrium.

What are the main issues?

1 Non-gradient system:

$$\frac{de_x}{dt} = [p_{x+2}r_{x+1} - p_{x+1}r_x](t) \text{ but } p_{x+1}r_x(t) \text{ is not a gradient.}$$

 \Rightarrow need to compute the "fluctuation-dissipation" equations.

② Second order approximations for the relative entropy:
 ⇒ need to correct the local Gibbs equilibrium.

3 Large energies:

 \Rightarrow need to control all energy moments.

How to prove the theorem?

• We correct the local Gibbs equilibrium:

$$d\nu_t^N = \frac{1}{Z_t} \prod_{x \in \mathbb{T}_N} e^{-\beta_t \left(\frac{x}{N}\right) e_x - \lambda_t \left(\frac{x}{N}\right) r_x} + \frac{1}{N} F\left(t, \frac{x}{N}\right) \cdot \tau_x h_{dr_x dp_x}.$$

How to prove the theorem?

• We correct the local Gibbs equilibrium:

$$d\nu_t^N = \frac{1}{Z_t} \prod_{x \in \mathbb{T}_N} e^{-\beta_t \left(\frac{x}{N}\right) e_x - \lambda_t \left(\frac{x}{N}\right) r_x + \frac{1}{N} F\left(t, \frac{x}{N}\right) \cdot \tau_x h} dr_x dp_x.$$

[Funaki, Uchiyama, Yau, 1996; Olla, Tremoulet, 2002]

How to prove the theorem?

• We correct the local Gibbs equilibrium:

$$d\nu_t^N = \frac{1}{Z_t} \prod_{x \in \mathbb{T}_N} e^{-\beta_t \left(\frac{x}{N}\right) e_x - \lambda_t \left(\frac{x}{N}\right) r_x} + \frac{1}{N} F\left(t, \frac{x}{N}\right) \cdot \tau_x h_{dr_x dp_x}.$$

[Funaki, Uchiyama, Yau, 1996; Olla, Tremoulet, 2002]

• Goal: a Gronwall estimate for $H_N(t) := H\left(\mu_t^N | \boldsymbol{\nu}_t^N \right)$:

$$\frac{dH_N(t)}{dt} \leqslant C \cdot H_N(t) + o(N).$$

▷ All estimates are uniform in $t \in [0, T]$, T fixed.

Which techniques?

• Reduce the problem to densities: if $\phi_t^N = \frac{d\nu_t^N}{d\mu_{1,0}^N}$

$$\frac{dH_N(t)}{dt} \leqslant \int \left[\frac{1}{\phi_t^N} \left(N^2 \mathcal{L}_N^* \phi_t^N - \frac{d\phi_t^N}{dt}\right)\right] d\mu_t^N$$

Which techniques?

• Reduce the problem to densities: if $\phi_t^N = \frac{d\nu_t^N}{d\mu_{1,0}^N}$

$$\frac{dH_N(t)}{dt} \leqslant \int \left[\frac{1}{\phi_t^N} \left(N^2 \mathcal{L}_N^* \phi_t^N - \frac{d\phi_t^N}{dt}\right)\right] d\mu_t^N$$

• Perform a Taylor expansion of

$$\frac{1}{\phi_t^N} \left(N^2 \mathcal{L}_N^* \phi_t^N - \frac{d\phi_t^N}{dt} \right)$$

with respect to 1/N.

• Obtain the **fluctuation-dissipation equations**:

 $\mathcal{L}_{N}(r_{x}) = \nabla(p_{x+1}) \quad \text{and} \quad p_{x+1} = \nabla(f_{x}) + \mathcal{L}_{N}^{*}(g_{x}),$ $\mathcal{L}_{N}(e_{x}) = \nabla(p_{x+1}r_{x}) \quad \text{and} \quad p_{x+1}r_{x} = \nabla(h_{x}) + \mathcal{L}_{N}^{*}(k_{x})$ where \mathcal{L}_{N}^{*} is the adjoint of \mathcal{L}_{N} on $\mathbb{L}^{2}(\mu_{\beta,\lambda}^{N}).$

• Obtain the **fluctuation-dissipation equations**:

 $\mathcal{L}_{N}(r_{x}) = \nabla(p_{x+1}) \quad \text{and} \quad p_{x+1} = \nabla(f_{x}) + \mathcal{L}_{N}^{*}(g_{x}),$ $\mathcal{L}_{N}(e_{x}) = \nabla(p_{x+1}r_{x}) \quad \text{and} \quad p_{x+1}r_{x} = \nabla(h_{x}) + \mathcal{L}_{N}^{*}(k_{x})$ where \mathcal{L}_{N}^{*} is the adjoint of \mathcal{L}_{N} on $\mathbb{L}^{2}(\mu_{\beta,\lambda}^{N}).$

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

• Obtain the **fluctuation-dissipation equations**:

 $\mathcal{L}_{N}(r_{x}) = \nabla(p_{x+1}) \quad \text{and} \quad p_{x+1} = \nabla(f_{x}) + \mathcal{L}_{N}^{*}(g_{x}),$ $\mathcal{L}_{N}(e_{x}) = \nabla(p_{x+1}r_{x}) \quad \text{and} \quad p_{x+1}r_{x} = \nabla(h_{x}) + \mathcal{L}_{N}^{*}(k_{x})$ where \mathcal{L}_{N}^{*} is the adjoint of \mathcal{L}_{N} on $\mathbb{L}^{2}(\mu_{\beta,\lambda}^{N}).$

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

• Good choice of the correction term

$$\frac{1}{N} \left[\beta_t'\left(\frac{x}{N}\right) k_x + \lambda_t'\left(\frac{x}{N}\right) g_x \right]$$

• Obtain the **fluctuation-dissipation equations**:

 $\mathcal{L}_{N}(r_{x}) = \nabla(p_{x+1}) \quad \text{and} \quad p_{x+1} = \nabla(f_{x}) + \mathcal{L}_{N}^{*}(g_{x}),$ $\mathcal{L}_{N}(e_{x}) = \nabla(p_{x+1}r_{x}) \quad \text{and} \quad p_{x+1}r_{x} = \nabla(h_{x}) + \mathcal{L}_{N}^{*}(k_{x})$ where \mathcal{L}_{N}^{*} is the adjoint of \mathcal{L}_{N} on $\mathbb{L}^{2}(\mu_{\beta,\lambda}^{N}).$ [Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

• Good choice of the correction term

$$\frac{1}{N} \left[\beta_t' \left(\frac{x}{N} \right) \mathbf{k}_x + \lambda_t' \left(\frac{x}{N} \right) \mathbf{g}_x \right]$$

One-block estimate

• Replace the average

$$\frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} p_x \qquad \text{by} \qquad \int p_0 \ d\mu^N_{\beta_{\ell}(y), \lambda_{\ell}(y)}$$

where $\beta_{\ell}(\cdot)$ and $\lambda_{\ell}(\cdot)$ are the profiles associated to the microscopic average energy and deformation profiles

$$e_{\ell}(y) = \frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} e_x$$

1

One-block estimate

• Replace the average

$$\frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} p_x \qquad \text{by} \qquad \int p_0 \ d\mu^N_{\beta_{\ell}(y), \lambda_{\ell}(y)}$$

where $\beta_{\ell}(\cdot)$ and $\lambda_{\ell}(\cdot)$ are the profiles associated to the microscopic average energy and deformation profiles

 \Rightarrow Standard technique from [Olla, Varadhan, Yau (1993)].

Control of large energies

• Why?

 $\,\triangleright\,$ One-block estimate: cut-off moments of order $k\leqslant 2.$

Control of large energies

• Why?

 $\,\triangleright\,$ One-block estimate: cut-off moments of order $k\leqslant 2.$

 \triangleright Taylor expansion: we need to estimate

$$\int \left(\sum_{x \in \mathbb{T}_N} \exp\left(\frac{e_x}{N}\right)\right) d\mu_t^N.$$

Control of large energies

• Why?

- $\,\triangleright\,$ One-block estimate: cut-off moments of order $k\leqslant 2.$
- \triangleright Taylor expansion: we need to estimate

$$\int \left(\sum_{x \in \mathbb{T}_N} \exp\left(\frac{e_x}{N}\right)\right) d\mu_t^N.$$

• What do we need? Uniform control:

$$\forall \ k \geqslant 1, \ \int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N \leqslant C \cdot N,$$

where C is a constant which does not depend on N and t.

How to estimate
$$\int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N$$
?

• Usually, the entropy inequality reduces the problem to estimate:

$$\int \exp\left(\delta \sum_{x\in\mathbb{T}_N} e^k_x
ight) d\mu^N_{eta,\lambda}$$

How to estimate
$$\int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N$$
?

• Usually, the entropy inequality reduces the problem to estimate:

$$\int \exp\left(\delta \sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_{eta,\lambda}^N$$

 \Rightarrow infinite for all $k \ge 2$ and all $\delta > 0$.

How to estimate
$$\int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N$$
?

• Usually, the entropy inequality reduces the problem to estimate:

$$\int \exp\left(\delta \sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_{eta,\lambda}^N$$

 \Rightarrow infinite for all $k \ge 2$ and all $\delta > 0$.

Theorem 2.1

If μ_0^N is a local Gibbs equilibrium, then there exists a constant C that does not depend on N and t s.t.

$$\forall \ k \geqslant 1, \ \int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N \leqslant (C \cdot k)^k \cdot N.$$

Idea of the proof

• If μ_0^N is a local Gibbs equilibrium state $\mu_{\beta_0(\cdot),\lambda_0(\cdot)}^N$, then μ_t^N is a convex combination of Gaussian measures

$$\mu_t^N(\cdot) = \int G_{m,C}(\cdot) \ d\rho^t(m,C)$$

Idea of the proof

• If μ_0^N is a local Gibbs equilibrium state $\mu_{\beta_0(\cdot),\lambda_0(\cdot)}^N$, then μ_t^N is a convex combination of Gaussian measures

$$\mu_t^N(\cdot) = \int G_{m,C}(\cdot) \ d\rho^t(m,C)$$

where ρ^t is the law of the r.v. $(m_t, C_t) \in \mathbb{R}^{2N} \times \mathfrak{S}_{2N}(\mathbb{R})$:

- $\succ \ (m_t, C_t)_{t \ge 0} \text{ is an explicit Markov process given by } (\omega_t)_{t \ge 0},$ $\succ \ m_t \text{ represents the mean vector,}$
- \triangleright C_t represents the correlation matrix.

Idea of the proof

• If μ_0^N is a local Gibbs equilibrium state $\mu_{\beta_0(\cdot),\lambda_0(\cdot)}^N$, then μ_t^N is a convex combination of Gaussian measures

$$\mu_t^N(\cdot) = \int G_{m,C}(\cdot) \ d\rho^t(m,C)$$

where ρ^t is the law of the r.v. $(m_t, C_t) \in \mathbb{R}^{2N} \times \mathfrak{S}_{2N}(\mathbb{R})$:

- $\succ (m_t, C_t)_{t \ge 0} \text{ is an explicit Markov process given by } (\omega_t)_{t \ge 0},$ $\succ m_t \text{ represents the mean vector,}$
- \triangleright C_t represents the correlation matrix.

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

• Consequently,

$$\int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N = \int G_{m,C} \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) \ d\rho^t(m,C).$$

• Consequently,

$$\int \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\mu_t^N = \int G_{m,C} \left(\sum_{x \in \mathbb{T}_N} e_x^k\right) d\rho^t(m,C).$$

• We are reduced to estimate

$$G_{m,C}\left(\sum_{x\in\mathbb{T}_N}e_x^k\right):=\int\left(\sum_{x\in\mathbb{T}_N}e_x^k\right)dG_{m,C},$$

"easily computable" thanks to the process (m_t, C_t) .

Final theorem

Let μ_0^N be a convex combination of Gibbs local equilibria, *close* to the local Gibbs equilibrium associated to \mathbf{e}_0 and \mathbf{r}_0 , in the sense:

$$H\left(\mu_0^N|\mu_{\beta_0(\cdot),\lambda_0(\cdot)}^N\right) = o(N)$$

Then, μ_t^N is *close* to the Gibbs local equilibrium associated to the profiles $\mathbf{e}(t, \cdot)$ and $\mathbf{r}(t, \cdot)$ defined on $\mathbb{R}_+ \times \mathbb{T}$ and solutions of

$$\begin{cases} \frac{\partial \mathbf{r}}{\partial t} = \frac{1}{\gamma} \cdot \frac{\partial^2 \mathbf{r}}{\partial q^2}, \\ \frac{\partial \mathbf{e}}{\partial t} = \frac{1}{2\gamma} \cdot \frac{\partial^2}{\partial q^2} \left(\mathbf{e} + \frac{\mathbf{r}^2}{2} \right), \end{cases} \begin{cases} \mathbf{r}(0, q) = \mathbf{r}_0(q), \\ \mathbf{e}(0, q) = \mathbf{e}_0(q), \end{cases}$$

in the sense:

$$H\left(\mu_t^N|\mu_{\beta(t,\cdot),\lambda(t,\cdot)}^N\right) = o(N)$$

In the future...

• Same model in a *non* homogeneous environment?

 \triangleright Add a random mass m_x on each atom x.

In the future...

- Same model in a *non* homogeneous environment?
 ▷ Add a random mass m_x on each atom x.
- In a non-equilibrium state? (in contact with reservoirs)

In the future...

- Same model in a *non* homogeneous environment?
 ▷ Add a random mass m_x on each atom x.
- In a non-equilibrium state? (in contact with reservoirs)
- Macroscopic fluctuations?
 - \triangleright e.g. large deviations for the current of energy.

References

- Simon, Hydrodynamic limits for the velocity-flip model, Stoch. Proc. and App. 123 [2013]
- 2 Ergodicity: Fritz, Funaki, Lebowitz ['94]
 Stationary states of random Hamiltonian systems.
- **3 Model:** Bernardin, Kannan, Lebowitz, Lukkarinen [2011] *Harmonic systems with bulk noise.*
- Relative entropy method: Funaki, Uchiyama, Yau ['96] Hydrodynamic limit for lattice gas reversible under Bernoulli measures.

Thank you for your attention.

