Hydrodynamic limits for the velocity-flip model

Marielle Simon,
École Normale Supérieure de Lyon

Advisor: Cédric Bernardin

Rouen, Rencontres de Probabilités 2013
Uтра

General idea

(1) Microscopic level: System of N particles, interacting and evolving in time ($N \sim 10^{23}$).

General idea

(1) Microscopic level: System of N particles, interacting and evolving in time $\left(N \sim 10^{23}\right)$.

(2) Macroscopic level:

General idea

(1) Microscopic level: System of N particles, interacting and evolving in time ($N \sim 10^{23}$).

(2) Macroscopic level:

\triangleright Equations (PDE's) on thermodynamical caracteristics: pressure, temperature $T(x, t), \ldots$
\triangleright Transport coefficients: $D(T)$ (diffusion).

General idea

(1) Microscopic level: System of N particles, interacting and evolving in time ($N \sim 10^{23}$).

(2) Macroscopic level:

\triangleright Equations (PDE's) on thermodynamical caracteristics: pressure, temperature $T(x, t), \ldots$
\triangleright Transport coefficients: $D(T)$ (diffusion).

$$
\frac{\partial T}{\partial t}=-\frac{\partial}{\partial x}\left[D(T) \frac{\partial T}{\partial x}\right]
$$

General idea

Problem

Deriving macroscopic laws from a microscopic description of the system dynamics.

General idea

Problem

Deriving macroscopic laws from a microscopic description of the system dynamics.

- Two scalings:
\triangleright in space (discrete \rightarrow continuous)
\triangleright in time (diffusive behavior $=$ diffusive scale $t N^{2}$)

General idea

Problem

Deriving macroscopic laws from a microscopic description of the system dynamics.

- Two scalings:
\triangleright in space (discrete \rightarrow continuous)
\triangleright in time (diffusive behavior $=$ diffusive scale $t N^{2}$)
- Non-equilibrium: initially, local equilibrium holds.

General idea

Problem

Deriving macroscopic laws from a microscopic description of the system dynamics.

- Two scalings:
\triangleright in space (discrete \rightarrow continuous)
\triangleright in time (diffusive behavior $=$ diffusive scale $t N^{2}$)
- Non-equilibrium: initially, local equilibrium holds.

Main idea

Hydrodynamic limits $=$ Propagation of local equilibrium

Model for heat conduction

- Chain of N harmonic coupled oscillators on the torus

$$
\mathbb{T}_{N}=\{0,1, \ldots, N-1\}
$$

p_{x} : momentum of particle x,
r_{x} : distance between the particle x and $x+1$.

Model for heat conduction

- Chain of N harmonic coupled oscillators on the torus

$$
\mathbb{T}_{N}=\{0,1, \ldots, N-1\}
$$

p_{x} : momentum of particle x,
r_{x} : distance between the particle x and $x+1$.

- A typical configuration is $\omega=(\mathbf{r}, \mathbf{p}) \in(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_{N}}$

$$
\mathbf{r}=\left(r_{x}\right)_{x \in \mathbb{T}_{N}}, \quad \mathbf{p}=\left(p_{x}\right)_{x \in \mathbb{T}_{N}}
$$

```
\(p_{x}\) : momentum of particle \(x\),
\(r_{x} \quad:\) distance between the particle \(x\) and \(x+1\).
```

- An Hamiltonian system described by

$$
\mathcal{H}=\sum_{x \in \mathbb{T}_{N}} \frac{p_{x}^{2}+r_{x}^{2}}{2}=\sum_{x \in \mathbb{T}_{N}} e_{x}
$$

p_{x} : momentum of particle x,
r_{x} : distance between the particle x and $x+1$.

- An Hamiltonian system described by

$$
\mathcal{H}=\sum_{x \in \mathbb{T}_{N}} \frac{p_{x}^{2}+r_{x}^{2}}{2}=\sum_{x \in \mathbb{T}_{N}} e_{x}
$$

- Newton's equations:

$$
\left\{\begin{aligned}
\frac{d r_{x}}{d t} & =p_{x+1}-p_{x} \\
\frac{d p_{x}}{d t} & =r_{x}-r_{x-1}
\end{aligned}\right.
$$

$$
\begin{aligned}
p_{x} & : \text { momentum of particle } x \\
r_{x} & : \text { distance between the particle } x \text { and } x+1
\end{aligned}
$$

- An Hamiltonian system described by

$$
\mathcal{H}=\sum_{x \in \mathbb{T}_{N}} \frac{p_{x}^{2}+r_{x}^{2}}{2}=\sum_{x \in \mathbb{T}_{N}} e_{x}
$$

- Newton's equations:

$$
\left\{\begin{aligned}
\frac{d r_{x}}{d t} & =p_{x+1}-p_{x} \\
\frac{d p_{x}}{d t} & =r_{x}-r_{x-1}
\end{aligned}\right.
$$

- Conserved quantities:

$$
\sum_{x \in \mathbb{T}_{N}} r_{x} \quad \sum_{x \in \mathbb{T}_{N}} p_{x} \quad \sum_{x \in \mathbb{T}_{N}} e_{x}
$$

Evolution of the configuration $\omega(t)$

Configurations: $\omega_{x}(t):=\left(p_{x}(t), r_{x}(t)\right)$ in $\Omega_{N}:=(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_{N}}$.

Evolution of the configuration $\omega(t)$

Configurations: $\omega_{x}(t):=\left(p_{x}(t), r_{x}(t)\right)$ in $\Omega_{N}:=(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_{N}}$.

- Deterministic evolution: Newton's equations

$$
\frac{d \omega}{d t}=F(\omega(t))
$$

Evolution of the configuration $\omega(t)$

Configurations: $\omega_{x}(t):=\left(p_{x}(t), r_{x}(t)\right)$ in $\Omega_{N}:=(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_{N}}$.

- Deterministic evolution: Newton's equations

$$
\frac{d \omega}{d t}=F(\omega(t))
$$

- Generator: for all $f: \Omega_{N} \rightarrow \mathbb{R}$, define $\mathcal{A}_{N}(f): \Omega_{N} \rightarrow \mathbb{R}$ by

$$
\mathcal{A}_{N}(f)(\omega)=F(\omega) \cdot \frac{\partial f}{\partial \omega}
$$

Evolution of the configuration $\omega(t)$

Configurations: $\omega_{x}(t):=\left(p_{x}(t), r_{x}(t)\right)$ in $\Omega_{N}:=(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_{N}}$.

- Deterministic evolution: Newton's equations

$$
\frac{d \omega}{d t}=F(\omega(t))
$$

- Generator: for all $f: \Omega_{N} \rightarrow \mathbb{R}$, define $\mathcal{A}_{N}(f): \Omega_{N} \rightarrow \mathbb{R}$ by

$$
\mathcal{A}_{N}(f)(\omega)=F(\omega) \cdot \frac{\partial f}{\partial \omega}
$$

Explicitely,

$$
\mathcal{A}_{N}(f)=\sum_{x \in \mathbb{T}_{N}}\left(p_{x+1}-p_{x}\right) \cdot \frac{\partial f}{\partial r_{x}}+\left(r_{x}-r_{x-1}\right) \cdot \frac{\partial f}{\partial p_{x}}
$$

- We add a stochastic noise \Rightarrow provides ergodicity.
- We add a stochastic noise \Rightarrow provides ergodicity.

Each particle x waits independently a random Poissonian time and then flips p_{x} into $-p_{x}$.

The new configuration is denoted by ($\mathbf{r}, \mathbf{p}^{x}$).

- The generator of the dynamics is:

$$
\mathcal{L}_{N}=\mathcal{A}_{N}+\gamma S_{N}
$$

where

$$
\begin{aligned}
\mathcal{A}_{N}(f) & =\sum_{x \in \mathbb{T}_{N}}\left(p_{x+1}-p_{x}\right) \cdot \frac{\partial f}{\partial r_{x}}+\left(r_{x}-r_{x-1}\right) \cdot \frac{\partial f}{\partial p_{x}} \\
\mathcal{S}_{N}(f)(\mathbf{r}, \mathbf{p}) & =\frac{1}{2} \sum_{x \in \mathbb{T}_{N}}\left[f\left(\mathbf{r}, \mathbf{p}^{x}\right)-f(\mathbf{r}, \mathbf{p})\right]
\end{aligned}
$$

... and its invariant measures

- Two conserved quantities:

... and its invariant measures

- Two conserved quantities:

$$
\sum_{x \in \mathbb{T}_{N}} r_{x}: \text { the total deformation, }
$$

... and its invariant measures

- Two conserved quantities:
$\sum_{x \in \mathbb{T}_{N}} r_{x}:$ the total deformation, $\sum_{x \in \mathbb{T}_{N}} e_{x}:$ the total energy

... and its invariant measures

- Two conserved quantities:

$$
\sum_{x \in \mathbb{T}_{N}} r_{x}: \text { the total deformation, } \sum_{x \in \mathbb{T}_{N}} e_{x}: \text { the total energy }
$$

- Family of invariant measures: the Gibbs states

$$
\mu_{\beta, \lambda}^{N}(d \mathbf{r}, d \mathbf{p})=\prod_{x \in \mathbb{T}_{N}} \frac{e^{-\beta e_{x}-\lambda r_{x}}}{Z(\beta, \lambda)} d r_{x} d p_{x}
$$

\triangleright Chemical potentials: $\beta>0, \lambda \in \mathbb{R}$,
\triangleright Hilbert space: $\mathbb{L}^{2}\left(\mu_{\beta, \lambda}^{N}\right)$.

Ergodicity of the infinite dynamics

\Rightarrow No other conserved quantities in a suitable sense:

Ergodicity of the infinite dynamics

\Rightarrow No other conserved quantities in a suitable sense:

Theorem 1.1 [Fritz, Funaki, Lebowitz, 1994]
If ν is a probability measure on $(\mathbb{R} \times \mathbb{R})^{\mathbb{Z}}$ which
(1) has finite entropy density,
(2) is translation invariant,
(3) is stationary for the infinite dynamics,
then ν is a convex combination of (infinite) Gibbs states.

Local equilibrium

The Gibbs local equilibrium measures associated to the profiles \mathbf{r} and \mathbf{e} defined on $\mathbb{T}=[0,1]$ are

$$
\mu_{\beta(\cdot), \lambda(\cdot)}^{N}(d \mathbf{r}, d \mathbf{p})=\prod_{x \in \mathbb{T}_{N}} \frac{\exp \left(-\beta\left(\frac{x}{N}\right) e_{x}-\lambda\left(\frac{x}{N}\right) r_{x}\right)}{Z_{\beta(\cdot), \lambda(\cdot)}} d r_{x} d p_{x}
$$

Local equilibrium

The Gibbs local equilibrium measures associated to the profiles \mathbf{r} and \mathbf{e} defined on $\mathbb{T}=[0,1]$ are

$$
\mu_{\beta(\cdot), \lambda(\cdot)}^{N}(d \mathbf{r}, d \mathbf{p})=\prod_{x \in \mathbb{T}_{N}} \frac{\exp \left(-\beta\left(\frac{x}{N}\right) e_{x}-\lambda\left(\frac{x}{N}\right) r_{x}\right)}{Z_{\beta(\cdot), \lambda(\cdot)}} d r_{x} d p_{x}
$$

where $\beta(\cdot)$ and $\lambda(\cdot)$ are the two chemical potential profiles related to $\mathbf{r}(\cdot)$ and $\mathbf{e}(\cdot)$ by the thermodynamical relations:

$$
\left\{\begin{array}{l}
\mathbf{e}=\frac{1}{\beta}+\frac{\lambda^{2}}{2 \beta^{2}} \\
\mathbf{r}=-\frac{\lambda}{\beta}
\end{array}\right.
$$

Local equilibrium

- Initially,
\triangleright a local equilibrium μ_{0}^{N} on $(\mathbb{R} \times \mathbb{R})^{\mathbb{T}_{N}}$, which is associated to a deformation profile \mathbf{r}_{0} and an energy profile \mathbf{e}_{0} on the torus $\mathbb{T}=[0,1]$:

Local equilibrium

- Initially,
\triangleright a local equilibrium μ_{0}^{N} on $\left(\mathbb{R} \times \mathbb{R}^{\mathbb{T}_{N}}\right.$, which is associated to a deformation profile \mathbf{r}_{0} and an energy profile \mathbf{e}_{0} on the torus $\mathbb{T}=[0,1]$:

For any continuous G on $\mathbb{T}, \delta>0$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \mu_{0}^{N}\left[\left|\frac{1}{N} \sum_{x \in \mathbb{T}_{N}} G\left(\frac{x}{N}\right) r_{x}-\int_{\mathbb{T}} G(v) \mathbf{r}_{0}(v) d v\right|>\delta\right]=0 . \\
& \lim _{N \rightarrow \infty} \mu_{0}^{N}\left[\left|\frac{1}{N} \sum_{x \in \mathbb{T}_{N}} G\left(\frac{x}{N}\right) e_{x}-\int_{\mathbb{T}} G(v) \mathbf{e}_{0}(v) d v\right|>\delta\right]=0 .
\end{aligned}
$$

Diffusive scaling

- We study the process in the diffusive scale, at time $t N^{2}$:
\triangleright the new generator is $N^{2} \mathcal{L}_{N}$,
\triangleright the law of the process is denoted by μ_{t}^{N}.

Diffusive scaling

- We study the process in the diffusive scale, at time $t N^{2}$:
\triangleright the new generator is $N^{2} \mathcal{L}_{N}$,
\triangleright the law of the process is denoted by μ_{t}^{N}.
- The relative entropy of the probability law μ with respect to the probability law ν is

$$
H(\mu \mid \nu)=\sup _{f}\left\{\int_{X} f d \mu-\log \left(\int_{X} e^{f} d \nu\right)\right\}
$$

(the supremum is carried over all bounded functions f)

Theorem 2.1.

We suppose that μ_{0}^{N} is a Gibbs local equilibrium associated to the profiles \mathbf{e}_{0} and \mathbf{r}_{0} :

$$
\mu_{0}^{N}=\mu_{\beta_{0}(\cdot), \lambda_{0}(\cdot)}^{N}
$$

Then, μ_{t}^{N} is close to the Gibbs local equilibrium associated to the profiles $\mathbf{e}(t, \cdot)$ and $\mathbf{r}(t, \cdot)$ defined on $\mathbb{R}_{+} \times \mathbb{T}$ and solutions of

$$
\left\{\begin{array} { l }
{ \frac { \partial \mathbf { r } } { \partial t } = \frac { 1 } { \gamma } \cdot \frac { \partial ^ { 2 } \mathbf { r } } { \partial q ^ { 2 } } , } \\
{ \frac { \partial \mathbf { e } } { \partial t } = \frac { 1 } { 2 \gamma } \cdot \frac { \partial ^ { 2 } } { \partial q ^ { 2 } } (\mathbf { e } + \frac { \mathbf { r } ^ { 2 } } { 2 }) , }
\end{array} \left\{\begin{array}{l}
\mathbf{r}(0, q)=\mathbf{r}_{0}(q) \\
\mathbf{e}(0, q)=\mathbf{e}_{0}(q)
\end{array}\right.\right.
$$

Theorem 2.1.

We suppose that μ_{0}^{N} is a Gibbs local equilibrium associated to the profiles \mathbf{e}_{0} and \mathbf{r}_{0} :

$$
\mu_{0}^{N}=\mu_{\beta_{0}(\cdot), \lambda_{0}(\cdot)}^{N}
$$

Then, μ_{t}^{N} is close to the Gibbs local equilibrium associated to the profiles $\mathbf{e}(t, \cdot)$ and $\mathbf{r}(t, \cdot)$ defined on $\mathbb{R}_{+} \times \mathbb{T}$ and solutions of

$$
\left\{\begin{array} { l }
{ \frac { \partial \mathbf { r } } { \partial t } = \frac { 1 } { \gamma } \cdot \frac { \partial ^ { 2 } \mathbf { r } } { \partial q ^ { 2 } } , } \\
{ \frac { \partial \mathbf { e } } { \partial t } = \frac { 1 } { 2 \gamma } \cdot \frac { \partial ^ { 2 } } { \partial q ^ { 2 } } (\mathbf { e } + \frac { \mathbf { r } ^ { 2 } } { 2 }) , }
\end{array} \left\{\begin{array}{l}
\mathbf{r}(0, q)=\mathbf{r}_{0}(q) \\
\mathbf{e}(0, q)=\mathbf{e}_{0}(q)
\end{array}\right.\right.
$$

in the sense:

$$
H\left(\mu_{t}^{N} \mid \mu_{\beta(t, \cdot), \lambda(t, \cdot)}^{N}\right)=o(N)
$$

Remark

- Conclusion $H_{N}(t):=H\left(\mu_{t}^{N} \mid \mu_{\beta(t, \cdot), \lambda(t, \cdot)}^{N}\right)=o(N)$ implies:

Hydrodynamic limit

For any continuous G on \mathbb{T}, "any" local function φ, and $\delta>0$,

$$
\begin{array}{r}
\mu_{t}^{N}\left[\left|\frac{1}{N} \sum_{x} G\left(\frac{x}{N}\right) \tau_{x} \varphi-\int_{\mathbb{T}} G(y) \tilde{\varphi}(\mathbf{e}(t, y), \mathbf{r}(t, y)) d y\right|>\delta\right] \\
\xrightarrow[N \rightarrow \infty]{\longrightarrow} 0,
\end{array}
$$

where $\tilde{\varphi}$ is the grand-canonical expectation of φ (under $\mu_{\beta, \lambda}$).

Remark

- Conclusion $H_{N}(t):=H\left(\mu_{t}^{N} \mid \mu_{\beta(t, \cdot), \lambda(t, \cdot)}^{N}\right)=o(N)$ implies:

Hydrodynamic limit

For any continuous G on \mathbb{T}, "any" local function φ, and $\delta>0$,

$$
\begin{array}{r}
\mu_{t}^{N}\left[\left|\frac{1}{N} \sum_{x} G\left(\frac{x}{N}\right) \tau_{x} \varphi-\int_{\mathbb{T}} G(y) \tilde{\varphi}(\mathbf{e}(t, y), \mathbf{r}(t, y)) d y\right|>\delta\right] \\
\underset{N \rightarrow \infty}{ } 0
\end{array}
$$

where $\tilde{\varphi}$ is the grand-canonical expectation of φ (under $\mu_{\beta, \lambda}$).

- Key ingredient is entropy inequality: for all $\alpha>0$,

$$
\int g d \mu_{t}^{N} \leqslant \frac{H_{N}(t)}{\alpha}+\frac{1}{\alpha} \log \left(\int e^{\alpha g} d \mu_{\beta(t, \cdot), \lambda(t, \cdot)}^{N}\right)
$$

What are the main issues?

(1) Non-gradient system:

$$
\begin{aligned}
& \frac{d e_{x}}{d t}=\left[p_{x+2} r_{x+1}-p_{x+1} r_{x}\right](t) \text { but } p_{x+1} r_{x}(t) \text { is not a gradient. } \\
& \Rightarrow \text { need to compute the "fluctuation-dissipation" equations. }
\end{aligned}
$$

What are the main issues?

(1) Non-gradient system:

$$
\begin{aligned}
& \frac{d e_{x}}{d t}=\left[p_{x+2} r_{x+1}-p_{x+1} r_{x}\right](t) \text { but } p_{x+1} r_{x}(t) \text { is not a gradient. } \\
& \Rightarrow \text { need to compute the "fluctuation-dissipation" equations. }
\end{aligned}
$$

(2) Second order approximations for the relative entropy:
\Rightarrow need to correct the local Gibbs equilibrium.

What are the main issues?

(1) Non-gradient system:

$$
\begin{aligned}
& \frac{d e_{x}}{d t}=\left[p_{x+2} r_{x+1}-p_{x+1} r_{x}\right](t) \text { but } p_{x+1} r_{x}(t) \text { is not a gradient. } \\
& \Rightarrow \text { need to compute the "fluctuation-dissipation" equations. }
\end{aligned}
$$

(2) Second order approximations for the relative entropy:
\Rightarrow need to correct the local Gibbs equilibrium.
(3) Large energies:
\Rightarrow need to control all energy moments.

How to prove the theorem?

- We correct the local Gibbs equilibrium:

$$
d \nu_{t}^{N}=\frac{1}{Z_{t}} \prod_{x \in \mathbb{T}_{N}} e^{-\beta_{t}\left(\frac{x}{N}\right) e_{x}-\lambda_{t}\left(\frac{x}{N}\right) r_{x}+\frac{1}{N} F\left(t, \frac{x}{N}\right) \cdot \tau_{x} h} d r_{x} d p_{x}
$$

How to prove the theorem?

- We correct the local Gibbs equilibrium:

$$
d \nu_{t}^{N}=\frac{1}{Z_{t}} \prod_{x \in \mathbb{T}_{N}} e^{-\beta_{t}\left(\frac{x}{N}\right) e_{x}-\lambda_{t}\left(\frac{x}{N}\right) r_{x}+\frac{1}{N} F\left(t, \frac{x}{N}\right) \cdot \tau_{x} h} d r_{x} d p_{x}
$$

[Funaki, Uchiyama, Yau, 1996; Olla, Tremoulet, 2002]

How to prove the theorem?

- We correct the local Gibbs equilibrium:

$$
d \nu_{t}^{N}=\frac{1}{Z_{t}} \prod_{x \in \mathbb{T}_{N}} e^{-\beta_{t}\left(\frac{x}{N}\right) e_{x}-\lambda_{t}\left(\frac{x}{N}\right) r_{x}+\frac{1}{N} F\left(t, \frac{x}{N}\right) \cdot \tau_{x} h} d r_{x} d p_{x}
$$

[Funaki, Uchiyama, Yau, 1996; Olla, Tremoulet, 2002]

- Goal: a Gronwall estimate for $H_{N}(t):=H\left(\mu_{t}^{N} \mid \nu_{t}^{N}\right)$:

$$
\frac{d H_{N}(t)}{d t} \leqslant C \cdot H_{N}(t)+o(N)
$$

\triangleright All estimates are uniform in $t \in[0, T], T$ fixed.

Which techniques?

- Reduce the problem to densities: if $\phi_{t}^{N}=\frac{d \nu_{t}^{N}}{d \mu_{1,0}^{N}}$

$$
\frac{d H_{N}(t)}{d t} \leqslant \int\left[\frac{1}{\phi_{t}^{N}}\left(N^{2} \mathcal{L}_{N}^{*} \phi_{t}^{N}-\frac{d \phi_{t}^{N}}{d t}\right)\right] d \mu_{t}^{N}
$$

Which techniques?

- Reduce the problem to densities: if $\phi_{t}^{N}=\frac{d \nu_{t}^{N}}{d \mu_{1,0}^{N}}$

$$
\frac{d H_{N}(t)}{d t} \leqslant \int\left[\frac{1}{\phi_{t}^{N}}\left(N^{2} \mathcal{L}_{N}^{*} \phi_{t}^{N}-\frac{d \phi_{t}^{N}}{d t}\right)\right] d \mu_{t}^{N}
$$

- Perform a Taylor expansion of

$$
\frac{1}{\phi_{t}^{N}}\left(N^{2} \mathcal{L}_{N}^{*} \phi_{t}^{N}-\frac{d \phi_{t}^{N}}{d t}\right)
$$

with respect to $1 / N$.

Fluctuation-dissipation equations

- Obtain the fluctuation-dissipation equations:

$$
\begin{aligned}
& \mathcal{L}_{N}\left(r_{x}\right)=\nabla\left(p_{x+1}\right) \quad \text { and } \quad p_{x+1} \quad=\nabla\left(f_{x}\right)+\mathcal{L}_{N}^{*}\left(g_{x}\right), \\
& \mathcal{L}_{N}\left(e_{x}\right)=\nabla\left(p_{x+1} r_{x}\right) \quad \text { and } \quad p_{x+1} r_{x}=\nabla\left(h_{x}\right)+\mathcal{L}_{N}^{*}\left(k_{x}\right) \\
& \text { where } \mathcal{L}_{N}^{*} \text { is the adjoint of } \mathcal{L}_{N} \text { on } \mathbb{L}^{2}\left(\mu_{\beta, \lambda}^{N}\right) .
\end{aligned}
$$

Fluctuation-dissipation equations

- Obtain the fluctuation-dissipation equations:

$$
\begin{aligned}
& \mathcal{L}_{N}\left(r_{x}\right)=\nabla\left(p_{x+1}\right) \quad \text { and } \quad p_{x+1}=\nabla\left(f_{x}\right)+\mathcal{L}_{N}^{*}\left(g_{x}\right), \\
& \mathcal{L}_{N}\left(e_{x}\right)=\nabla\left(p_{x+1} r_{x}\right) \quad \text { and } \quad p_{x+1} r_{x}=\nabla\left(h_{x}\right)+\mathcal{L}_{N}^{*}\left(k_{x}\right) \\
& \text { where } \mathcal{L}_{N}^{*} \text { is the adjoint of } \mathcal{L}_{N} \text { on } \mathbb{L}^{2}\left(\mu_{\beta, \lambda}^{N}\right) .
\end{aligned}
$$

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

Fluctuation-dissipation equations

- Obtain the fluctuation-dissipation equations:

$$
\begin{aligned}
& \mathcal{L}_{N}\left(r_{x}\right)=\nabla\left(p_{x+1}\right) \quad \text { and } \quad p_{x+1}=\nabla\left(f_{x}\right)+\mathcal{L}_{N}^{*}\left(g_{x}\right), \\
& \mathcal{L}_{N}\left(e_{x}\right)=\nabla\left(p_{x+1} r_{x}\right) \quad \text { and } \quad p_{x+1} r_{x}=\nabla\left(h_{x}\right)+\mathcal{L}_{N}^{*}\left(k_{x}\right) \\
& \text { where } \mathcal{L}_{N}^{*} \text { is the adjoint of } \mathcal{L}_{N} \text { on } \mathbb{L}^{2}\left(\mu_{\beta, \lambda}^{N}\right) .
\end{aligned}
$$

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

- Good choice of the correction term

$$
\frac{1}{N}\left[\beta_{t}^{\prime}\left(\frac{x}{N}\right) k_{x}+\lambda_{t}^{\prime}\left(\frac{x}{N}\right) g_{x}\right]
$$

Fluctuation-dissipation equations

- Obtain the fluctuation-dissipation equations:

$$
\begin{aligned}
& \mathcal{L}_{N}\left(r_{x}\right)=\nabla\left(p_{x+1}\right) \quad \text { and } \quad p_{x+1} \quad=\nabla\left(f_{x}\right)+\mathcal{L}_{N}^{*}\left(g_{x}\right), \\
& \mathcal{L}_{N}\left(e_{x}\right)=\nabla\left(p_{x+1} r_{x}\right) \quad \text { and } \quad p_{x+1} r_{x}=\nabla\left(h_{x}\right)+\mathcal{L}_{N}^{*}\left(k_{x}\right)
\end{aligned}
$$

where \mathcal{L}_{N}^{*} is the adjoint of \mathcal{L}_{N} on $\mathbb{L}^{2}\left(\mu_{\beta, \lambda}^{N}\right)$.
[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

- Good choice of the correction term

$$
\frac{1}{N}\left[\beta_{t}^{\prime}\left(\frac{x}{N}\right) k_{x}+\lambda_{t}^{\prime}\left(\frac{x}{N}\right) g_{x}\right]
$$

One-block estimate

- Replace the average

$$
\frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} p_{x} \quad \text { by } \quad \int p_{0} d \mu_{\beta_{\ell}(y), \lambda_{\ell}(y)}^{N}
$$

where $\beta_{\ell}(\cdot)$ and $\lambda_{\ell}(\cdot)$ are the profiles associated to the microscopic average energy and deformation profiles

$$
e_{\ell}(y)=\frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} e_{x}
$$

One-block estimate

- Replace the average

$$
\frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} p_{x} \quad \text { by } \quad \int p_{0} d \mu_{\beta_{\ell}(y), \lambda_{\ell}(y)}^{N}
$$

where $\beta_{\ell}(\cdot)$ and $\lambda_{\ell}(\cdot)$ are the profiles associated to the microscopic average energy and deformation profiles

$$
e_{\ell}(y)=\frac{1}{\ell} \sum_{x \in \Lambda_{\ell}(y)} e_{x}
$$

\Rightarrow Standard technique from [Olla, Varadhan, Yau (1993)].

Control of large energies

- Why?
\triangleright One-block estimate: cut-off moments of order $k \leqslant 2$.

Control of large energies

- Why?
\triangleright One-block estimate: cut-off moments of order $k \leqslant 2$.
\triangleright Taylor expansion: we need to estimate

$$
\int\left(\sum_{x \in \mathbb{T}_{N}} \exp \left(\frac{e_{x}}{N}\right)\right) d \mu_{t}^{N}
$$

Control of large energies

- Why?
\triangleright One-block estimate: cut-off moments of order $k \leqslant 2$.
\triangleright Taylor expansion: we need to estimate

$$
\int\left(\sum_{x \in \mathbb{T}_{N}} \exp \left(\frac{e_{x}}{N}\right)\right) d \mu_{t}^{N}
$$

- What do we need? Uniform control:

$$
\forall k \geqslant 1, \quad \int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N} \leqslant C \cdot N
$$

where C is a constant which does not depend on N and t.

How to estimate $\int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N}$?

- Usually, the entropy inequality reduces the problem to estimate:

$$
\int \exp \left(\delta \sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{\beta, \lambda}^{N}
$$

How to estimate $\int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N}$?

- Usually, the entropy inequality reduces the problem to estimate:

$$
\int \exp \left(\delta \sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{\beta, \lambda}^{N}
$$

\Rightarrow infinite for all $k \geqslant 2$ and all $\delta>0$.

How to estimate $\int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N}$?

- Usually, the entropy inequality reduces the problem to estimate:

$$
\int \exp \left(\delta \sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{\beta, \lambda}^{N}
$$

\Rightarrow infinite for all $k \geqslant 2$ and all $\delta>0$.

Theorem 2.1

If μ_{0}^{N} is a local Gibbs equilibrium, then there exists a constant C that does not depend on N and t s.t.

$$
\forall k \geqslant 1, \quad \int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N} \leqslant(C \cdot k)^{k} \cdot N
$$

Idea of the proof

- If μ_{0}^{N} is a local Gibbs equilibrium state $\mu_{\beta_{0}(\cdot), \lambda_{0}(\cdot)}^{N}$, then μ_{t}^{N} is a convex combination of Gaussian measures

$$
\mu_{t}^{N}(\cdot)=\int G_{m, C}(\cdot) d \rho^{t}(m, C)
$$

Idea of the proof

- If μ_{0}^{N} is a local Gibbs equilibrium state $\mu_{\beta_{0}(\cdot), \lambda_{0}(\cdot)}^{N}$, then μ_{t}^{N} is a convex combination of Gaussian measures

$$
\mu_{t}^{N}(\cdot)=\int G_{m, C}(\cdot) d \rho^{t}(m, C)
$$

where ρ^{t} is the law of the r.v. $\left(m_{t}, C_{t}\right) \in \mathbb{R}^{2 N} \times \mathfrak{S}_{2 N}(\mathbb{R})$:
$\triangleright\left(m_{t}, C_{t}\right)_{t \geqslant 0}$ is an explicit Markov process given by $\left(\omega_{t}\right)_{t \geqslant 0}$,
$\triangleright m_{t}$ represents the mean vector,
$\triangleright C_{t}$ represents the correlation matrix.

Idea of the proof

- If μ_{0}^{N} is a local Gibbs equilibrium state $\mu_{\beta_{0}(\cdot), \lambda_{0}(\cdot)}^{N}$, then μ_{t}^{N} is a convex combination of Gaussian measures

$$
\mu_{t}^{N}(\cdot)=\int G_{m, C}(\cdot) d \rho^{t}(m, C)
$$

where ρ^{t} is the law of the r.v. $\left(m_{t}, C_{t}\right) \in \mathbb{R}^{2 N} \times \mathfrak{S}_{2 N}(\mathbb{R})$:
$\triangleright\left(m_{t}, C_{t}\right)_{t \geqslant 0}$ is an explicit Markov process given by $\left(\omega_{t}\right)_{t \geqslant 0}$,
$\triangleright m_{t}$ represents the mean vector,
$\triangleright C_{t}$ represents the correlation matrix.
[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

- Consequently,

$$
\int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N}=\int G_{m, C}\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \rho^{t}(m, C)
$$

- Consequently,

$$
\int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \mu_{t}^{N}=\int G_{m, C}\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d \rho^{t}(m, C)
$$

- We are reduced to estimate

$$
G_{m, C}\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right):=\int\left(\sum_{x \in \mathbb{T}_{N}} e_{x}^{k}\right) d G_{m, C}
$$

"easily computable" thanks to the process $\left(m_{t}, C_{t}\right)$.

Final theorem

Let μ_{0}^{N} be a convex combination of Gibbs local equilibria, close to the local Gibbs equilibrium associated to \mathbf{e}_{0} and \mathbf{r}_{0}, in the sense:

$$
H\left(\mu_{0}^{N} \mid \mu_{\beta_{0}(\cdot), \lambda_{0}(\cdot)}^{N}\right)=o(N)
$$

Then, μ_{t}^{N} is close to the Gibbs local equilibrium associated to the profiles $\mathbf{e}(t, \cdot)$ and $\mathbf{r}(t, \cdot)$ defined on $\mathbb{R}_{+} \times \mathbb{T}$ and solutions of

$$
\left\{\begin{array} { l }
{ \frac { \partial \mathbf { r } } { \partial t } = \frac { 1 } { \gamma } \cdot \frac { \partial ^ { 2 } \mathbf { r } } { \partial q ^ { 2 } } , } \\
{ \frac { \partial \mathbf { e } } { \partial t } = \frac { 1 } { 2 \gamma } \cdot \frac { \partial ^ { 2 } } { \partial q ^ { 2 } } (\mathbf { e } + \frac { \mathbf { r } ^ { 2 } } { 2 }) , }
\end{array} \left\{\begin{array}{l}
\mathbf{r}(0, q)=\mathbf{r}_{0}(q) \\
\mathbf{e}(0, q)=\mathbf{e}_{0}(q)
\end{array}\right.\right.
$$

in the sense:

$$
H\left(\mu_{t}^{N} \mid \mu_{\beta(t, \cdot), \lambda(t, \cdot)}^{N}\right)=o(N)
$$

In the future...

- Same model in a non homogeneous environment?
\triangleright Add a random mass m_{x} on each atom x.

In the future...

- Same model in a non homogeneous environment?
\triangleright Add a random mass m_{x} on each atom x.
- In a non-equilibrium state? (in contact with reservoirs)

In the future...

- Same model in a non homogeneous environment?
\triangleright Add a random mass m_{x} on each atom x.
- In a non-equilibrium state? (in contact with reservoirs)
- Macroscopic fluctuations?
\triangleright e.g. large deviations for the current of energy.

References

(1) Simon, Hydrodynamic limits for the velocity-flip model, Stoch. Proc. and App. 123 [2013]
(2) Ergodicity: Fritz, Funaki, Lebowitz ['94] Stationary states of random Hamiltonian systems.
(3) Model: Bernardin, Kannan, Lebowitz, Lukkarinen [2011] Harmonic systems with bulk noise.
(4) Relative entropy method: Funaki, Uchiyama, Yau ['96] Hydrodynamic limit for lattice gas reversible under Bernoulli measures.

Thank you for your attention.

Uтрра

