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General idea
1 Microscopic level: System of N particles, interacting and

evolving in time (N ∼ 1023).

TL TR

2 Macroscopic level:

TL TR
x

� Equations (PDE’s) on thermodynamical caracteristics:
pressure, temperature T (x, t),...

� Transport coefficients: D(T ) (diffusion).

∂T
∂t = − ∂

∂x

[
D(T )∂T

∂x

]
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General idea

Problem
Deriving macroscopic laws from a microscopic description of the
system dynamics.

• Two scalings:

� in space (discrete → continuous)

� in time (diffusive behavior = diffusive scale tN 2)

• Non-equilibrium: initially, local equilibrium holds.

Main idea
Hydrodynamic limits = Propagation of local equilibrium
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Model for heat conduction

• Chain of N harmonic coupled oscillators on the torus

TN = {0, 1, ...,N − 1}

px : momentum of particle x,
rx : distance between the particle x and x + 1.

• A typical configuration is ω = (r,p) ∈ (R× R)TN

r = (rx)x∈TN , p = (px)x∈TN .
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px : momentum of particle x,
rx : distance between the particle x and x + 1.

• An Hamiltonian system described by

H =
∑

x∈TN

p2
x + r2

x
2 =

∑
x∈TN

ex .

• Newton’s equations:
drx
dt = px+1 − px

dpx
dt = rx − rx−1

• Conserved quantities:∑
x∈TN

rx
∑

x∈TN

px
∑

x∈TN

ex
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Evolution of the configuration ω(t)

Configurations: ωx(t) :=
(
px(t), rx(t)

)
in ΩN := (R× R)TN .

• Deterministic evolution: Newton’s equations

dω
dt = F(ω(t))

• Generator: for all f : ΩN → R, define AN (f ) : ΩN → R by

AN (f )(ω) = F(ω) · ∂f
∂ω

Explicitely,

AN (f ) =
∑

x∈TN

(px+1 − px) · ∂f
∂rx

+ (rx − rx−1) · ∂f
∂px
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• We add a stochastic noise ⇒ provides ergodicity.

Each particle x waits independently a random Poissonian time
and then flips px into −px .

The new configuration is denoted by (r,px).
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• The generator of the dynamics is:

LN = AN + γSN ,

where

AN (f ) =
∑

x∈TN

(px+1 − px) · ∂f
∂rx

+ (rx − rx−1) · ∂f
∂px

,

SN (f )(r,p) = 1
2
∑

x∈TN

[f (r,px)− f (r,p)].
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... and its invariant measures

• Two conserved quantities:

∑
x∈TN

rx : the total deformation,
∑

x∈TN

ex : the total energy

• Family of invariant measures: the Gibbs states

µN
β,λ(dr, dp) =

∏
x∈TN

e−βex−λrx

Z (β, λ) drxdpx .

� Chemical potentials: β > 0, λ ∈ R,

� Hilbert space: L2(µN
β,λ).
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Ergodicity of the infinite dynamics

⇒ No other conserved quantities in a suitable sense:

Theorem 1.1 [Fritz, Funaki, Lebowitz, 1994]
If ν is a probability measure on (R× R)Z which

1 has finite entropy density,
2 is translation invariant,
3 is stationary for the infinite dynamics,

then ν is a convex combination of (infinite) Gibbs states.
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Local equilibrium
The Gibbs local equilibrium measures associated to the
profiles r and e defined on T = [0, 1] are

µN
β(·),λ(·)(dr, dp) =

∏
x∈TN

exp
(
−β

( x
N

)
ex − λ

( x
N

)
rx

)
Zβ(·),λ(·)

drxdpx ,

where β(·) and λ(·) are the two chemical potential profiles
related to r(·) and e(·) by the thermodynamical relations:

e = 1
β

+ λ2

2β2 ,

r = −λ
β
.
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Local equilibrium

• Initially,
� a local equilibrium µN

0 on (R× R)TN , which is associated
to a deformation profile r0 and an energy profile e0 on the
torus T = [0, 1]:

For any continuous G on T, δ > 0,

lim
N→∞

µN
0

∣∣∣∣∣∣ 1N
∑

x∈TN

G
( x
N

)
rx −

∫
T
G(v)r0(v)dv

∣∣∣∣∣∣ > δ

 = 0.

lim
N→∞

µN
0

∣∣∣∣∣∣ 1N
∑

x∈TN

G
( x
N

)
ex −

∫
T
G(v)e0(v)dv

∣∣∣∣∣∣ > δ

 = 0.
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Diffusive scaling

• We study the process in the diffusive scale, at time tN 2:

� the new generator is N 2LN ,

� the law of the process is denoted by µN
t .

• The relative entropy of the probability law µ with
respect to the probability law ν is

H (µ|ν) = sup
f

{∫
X
f dµ− log

(∫
X
ef dν

)}
.

(the supremum is carried over all bounded functions f )
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Theorem 2.1.
We suppose that µN

0 is a Gibbs local equilibrium associated to
the profiles e0 and r0:

µN
0 = µN

β0(·),λ0(·).

Then, µN
t is close to the Gibbs local equilibrium associated to

the profiles e(t, ·) and r(t, ·) defined on R+ × T and solutions of
∂r
∂t = 1

γ
· ∂

2r
∂q2 ,

∂e
∂t = 1

2γ ·
∂2

∂q2

(
e + r2

2

)
,

{
r(0, q) = r0(q),
e(0, q) = e0(q),

in the sense:
H
(
µN

t |µN
β(t,·),λ(t,·)

)
= o(N )
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Remark
• Conclusion HN (t) := H

(
µN

t |µN
β(t,·),λ(t,·)

)
= o(N ) implies:

Hydrodynamic limit
For any continuous G on T, “any” local function ϕ, and δ > 0,

µN
t

[∣∣∣∣∣ 1N ∑
x

G
( x
N

)
τxϕ−

∫
T
G(y) ϕ̃(e(t, y), r(t, y))dy

∣∣∣∣∣ > δ

]
−−−−→
N→∞

0,

where ϕ̃ is the grand-canonical expectation of ϕ (under µβ,λ).

• Key ingredient is entropy inequality: for all α > 0,∫
g dµN

t 6
HN (t)
α

+ 1
α
log

(∫
eαg dµN

β(t,·),λ(t,·)

)
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What are the main issues?

1 Non-gradient system:

dex
dt = [px+2rx+1−px+1rx ](t) but px+1rx(t) is not a gradient.

⇒ need to compute the “fluctuation–dissipation” equations.

2 Second order approximations for the relative entropy:
⇒ need to correct the local Gibbs equilibrium.

3 Large energies:
⇒ need to control all energy moments.
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How to prove the theorem?

• We correct the local Gibbs equilibrium:

dνN
t = 1

Zt

∏
x∈TN

e
−βt

( x
N

)
ex − λt

( x
N

)
rx + 1

N F
(
t, xN

)
· τxhdrxdpx .

[Funaki, Uchiyama, Yau, 1996; Olla, Tremoulet, 2002]

• Goal: a Gronwall estimate for HN (t) := H
(
µN

t |νN
t

)
:

dHN (t)
dt 6 C ·HN (t) + o(N ).

� All estimates are uniform in t ∈ [0,T ], T fixed.
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Which techniques?

• Reduce the problem to densities: if φN
t = dνN

t
dµN

1,0

dHN (t)
dt 6

∫ [ 1
φN

t

(
N 2L∗NφN

t −
dφN

t
dt

)]
dµN

t

• Perform a Taylor expansion of

1
φN

t

(
N 2L∗NφN

t −
dφN

t
dt

)

with respect to 1/N .
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Fluctuation-dissipation equations

• Obtain the fluctuation-dissipation equations:

LN (rx) = ∇(px+1) and px+1 = ∇ (fx) + L∗N (gx),

LN (ex) = ∇(px+1rx) and px+1rx = ∇ (hx) + L∗N (kx)

where L∗N is the adjoint of LN on L2(µN
β,λ).

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]

• Good choice of the correction term

1
N

[
β′t

( x
N

)
kx + λ′t

( x
N

)
gx

]
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( x
N

)
gx

]
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One-block estimate

• Replace the average

1
`

∑
x∈Λ`(y)

px by
∫

p0 dµN
β`(y),λ`(y)

where β`(·) and λ`(·) are the profiles associated to the
microscopic average energy and deformation profiles

e`(y) = 1
`

∑
x∈Λ`(y)

ex

Λ`

⇒ Standard technique from [Olla, Varadhan, Yau (1993)].
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Control of large energies

• Why?
� One-block estimate: cut-off moments of order k 6 2.

� Taylor expansion: we need to estimate

∫  ∑
x∈TN

exp
(ex
N

) dµN
t .

• What do we need? Uniform control:

∀ k > 1,
∫  ∑

x∈TN

ek
x

 dµN
t 6 C ·N ,

where C is a constant which does not depend on N and t.
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How to estimate
∫ (∑

x∈TN

ek
x

)
dµN

t ?

• Usually, the entropy inequality reduces the problem to
estimate: ∫

exp

δ ∑
x∈TN

ek
x

 dµN
β,λ

⇒ infinite for all k > 2 and all δ > 0.

Theorem 2.1
If µN

0 is a local Gibbs equilibrium, then there exists a constant
C that does not depend on N and t s.t.

∀ k > 1,
∫  ∑

x∈TN

ek
x

 dµN
t 6 (C · k)k ·N .
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Idea of the proof

• If µN
0 is a local Gibbs equilibrium state µN

β0(·),λ0(·), then µ
N
t

is a convex combination of Gaussian measures

µN
t (·) =

∫
Gm,C (·) dρt(m,C )

where ρt is the law of the r.v. (mt ,Ct) ∈ R2N ×S2N (R):

� (mt ,Ct)t>0 is an explicit Markov process given by (ωt)t>0,
� mt represents the mean vector,
� Ct represents the correlation matrix.

[Bernardin, Kannan, Lebowitz, Lukkarinen, 2011]
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• Consequently,

∫  ∑
x∈TN

ek
x

 dµN
t =

∫
Gm,C

 ∑
x∈TN

ek
x

 dρt(m,C ).

• We are reduced to estimate

Gm,C

 ∑
x∈TN

ek
x

 :=
∫  ∑

x∈TN

ek
x

 dGm,C ,

“easily computable” thanks to the process (mt ,Ct).
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Final theorem
Let µN

0 be a convex combination of Gibbs local equilibria, close
to the local Gibbs equilibrium associated to e0 and r0, in the sense:

H
(
µN

0 |µN
β0(·),λ0(·)

)
= o(N )

Then, µN
t is close to the Gibbs local equilibrium associated to the

profiles e(t, ·) and r(t, ·) defined on R+ × T and solutions of
∂r
∂t = 1

γ
· ∂

2r
∂q2 ,

∂e
∂t = 1

2γ ·
∂2

∂q2

(
e + r2

2

)
,

{
r(0, q) = r0(q),
e(0, q) = e0(q),

in the sense:
H
(
µN

t |µN
β(t,·),λ(t,·)

)
= o(N )
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In the future...

• Same model in a non homogeneous environment?
� Add a random mass mx on each atom x.

• In a non-equilibrium state? (in contact with reservoirs)

• Macroscopic fluctuations?
� e.g. large deviations for the current of energy.



27/ 29

In the future...

• Same model in a non homogeneous environment?
� Add a random mass mx on each atom x.

• In a non-equilibrium state? (in contact with reservoirs)

• Macroscopic fluctuations?
� e.g. large deviations for the current of energy.



27/ 29

In the future...

• Same model in a non homogeneous environment?
� Add a random mass mx on each atom x.

• In a non-equilibrium state? (in contact with reservoirs)

• Macroscopic fluctuations?
� e.g. large deviations for the current of energy.



28/ 29

References

1 Simon, Hydrodynamic limits for the velocity-flip model,
Stoch. Proc. and App. 123 [2013]

2 Ergodicity: Fritz, Funaki, Lebowitz [’94]
Stationary states of random Hamiltonian systems.

3 Model: Bernardin, Kannan, Lebowitz, Lukkarinen [2011]
Harmonic systems with bulk noise.

4 Relative entropy method: Funaki, Uchiyama, Yau [’96]
Hydrodynamic limit for lattice gas reversible under Bernoulli
measures.



Thank you for your attention.
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