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Brief history, euristic arguments

The Imry-Ma argument (1975)

ne Bricmont-Kupianen result (1988)
ne Aizemnan-Wehr result (1990)
Stabllity of the interfaces

Kac ‘random fieldd = 1. Summary of previous
results, COP (99), COPV (2005) and weak large
deviations principle (OP, In preparation).

Results on the dynamics associated to Kac
‘random field,d > 3, MOS (2003), MO (2005).
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THE MODEL

ce8S={-1+1Y"(S,F,p),0>0,AC2Z°
pi(0i =1) = pi(0; = —1) = 3

Energy.
HA(O') = — Z O'Z'O'j—|—(QZhi(W)O'@'

li—j|=1,iAjEA ieA
(2, B,IP) (Polish space)
Plh;(w) = 1] =Plhij(w) = —1] = = 1.0.7.0.

Givenn € §, w € (), the random finite volume
Gibbs measure:

random —p.3



1
— 77

:“gi}\(dgl\) 6—5HA(0A,77AC)pA(dOA)5nAC (dUAc)

As function ofw IS a measurable function. Care
should be taken when performing the limit.
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Heuristic argument

The cumulative effect of the magnetic field on a
uniform spin configuration in a regida-L, L]¢ is
~ L5

The symmetry breaking mechanism Is

OA| = L1

The critical dimension 19 = 2

Bricmont, Kupianen (1988) > 3 : existence of
phase transition for temperature and disorder
small

Aizenman, Wehr (199QJ = 2 a.s. unicity of the
Gibbs measure.
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Thelmry-Ma argument (1975)

They tried to extend the Peierls argument to a
situation where the symmetry was broken by the
presence of the random field.

Pelerls argument : Basic intuition: for large
(low temperature), the Gibbs measures should
strongly favor configurations with minimal
energy.

If h # 0, then the configuration; = sign(h) will
be the configuration with minimal energy. If

h = 0theno; = 1oro; = —1 will be the two
minimal states.

Introduce contours, which characterize locally
unlikely configurations
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show that typical configurations do not contain
large regions where configurations are atypical

w(0el) <e 2 7| finite
essential the spin-flip symmetry

there are several choices for configurations not
containing large undesiderable regions

{I':|T|=Fk0ecl} <3
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. 1
ps(Ar €T(0): 0€T) < Y e 23k < =

2
k>2d
If 3 large enough. This implies the existence of at leasl
two different Gibbs measures.
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In the RFIM the bulk energies of the two ground
states are not the same. Ifthe=1,2 € I

Bk (') = -6 Z h,;

Ifthe o, = —1,1¢ EF

Ebulk(r) =0 Z hz

M(O = F) ~ 6_25|F|6292i€f‘ hi
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Whenh,; are bounded
’292 hi| < 260|T
iel

If |T'| is large, even if small, can be bigger than

surface term.
Imry-Ma argue that the “typical value” for

Eput(T) =~ £64/ || = 6|7 |,

since
. d
T < 2d|T|@
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Then

2—d
: —2|'| | 3—6|I|2(@=D)
40 € ) o ¢ |-
Small whend > 2 andg small.

These considerations led Imry-Ma to tt@ rect
prediction.

Remark If 6 is not small, then even in small
contours ( no CLT) the bulk energy can dominate
surface energy.

Following Imry-Ma we repeat their argument in a
“more” precise way.
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Apply Pelerls argument.’ a contour containing
the origin. Denotd™* the inner boundary and
['°“ the exterior boundary

—28|T| _TA\I"™,6

,ufﬂ[apm — 1] <e lZ-H
P\Lnt, 3

+1

,ufﬂ[apmt = +1] < e 2 =i
P\I‘int’ﬁ

Lemma In the RFIM, for any Gibbs state;,

usll € T(0)] < A2 I 2 e =2 e )
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To treat the last term we use tlencentration
of measures phenomenon.

Roughly: a Lipschitz function of I.I.d. random
variables has fluctuations not bigger than those of
a corresponding linear function. Investigated
widely In the last 30 years (see Ledoux
-Talagrand ).
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neorem Let f : [-1,1]" — R be a function
whose level sets are convex. Suppose that

Lipschitz,X,Y € [—1,1]V,
(X)) = F(Y)] < CLipll X = Y2

Then if Xy, .. Xy are 1.I.d. random variables with
valuesinj—1,1| setZ = f(Xy,..Xn)

16C*

Lip

2
]P[ZMZ>Z]§4ea7p( - )
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Comments:

’E(Z) — Mz‘ S SﬁOLZ'p ~ C[ﬂ;p

P[|Z — E[Z]| > 2] < dexp ( (Zlggfp) ) .

Lip
Then, whenC'.;, Is small compared te?, one
can replaceV/, with E[Z].

If X;,2=1,..., N arel.l.d, standard gaussian
random variable, then the estimate can be
Improved.
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L emma Assume the random field symmetric,
bounded (or Gaussian distributed)

22
> 2] < Cexp ( 92520|F|>

proof By symmetry of the distribution o

+1 —1
]P)H In Zf\p’nt —In Zf‘\rz'nt

ElnZ{' ] =EnZ.' |

I‘\I‘znt F\I‘znt
' +1 —1
IP)_ In Zf‘\rint o Zf‘\rint > Z] <
[ +1 +1
IP)_ In Zf‘\rint o E[ln Zf‘\rint”

1l M7 _whn7zl 7> s Eemoes



2
<2P||nZfL,, —EnZ3L,) > 2

Let

f(hi,...,hy) =|In Z;\lw

N =T\ T,
f Is convex (by differentiation)
compute the Lipschitz norm
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+1

Oh,

f(h) = f(W) <sup| > [h;—h]]

ho ] jer\rint

<05 s pppueglor)| Sy K

T int . ]
J EP\P jEP\Fm’t

< 66+\/|IT'|||h — K2 by Schwarz inequality

By previous Theorem we obtain the thesis.
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So for a given contour, settingz = 864/ T
usll € T(0)] < 2TV - /1) = |1t
with
I |
P>1—-Ce Mlc >1—Cexp {—E\Fjl}
since

[T

’F‘d 1
|
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One should prove that

: 1
Plus 30, T el'(0),0 €T < 5 > ()

This Is the analogous of Peierls Theorem for
random model. It implies that there will be at
least two extremal Gibbs states with positive
probability. However the number of extremal
Gibbs states for a given random interactions with
sufficient ergodic properties is almost sure
constant ( Newmann 97- Lectures In
Mathematics).
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The attempt to show, for smdl

P {31“, 0el, |z, —nZ7k,, > mry}

IS smallfails

' +1 1
P [ar, 0€l, |z, —nZ7k,, > ﬁm}

< Y P|InZi, — Iz, = 8|

I,0el

random — p.21



. (792H5] I
I,0el
< Z ea?p{— ki + kInC'}
k>2d
since

T |T| = k,0 € I'}| < M4 < O

conclusion The sum diverges. The first inequality
spoll the estimates!!!
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Reasonable if the partition function for different

[ were almost independent !! If andI” are very
similar this is not the case.

Theorem Assume that there exists > 0 so that
forall A, N C Z¢,

Plnz' -z —E[InzZ{" —InZ']| > 2]

2,2
<
<o (- cminan)

then, ifd > 3 there exist®, > 0, Gy < oo, S0 that
for0 < 6y ands > 3y, P a.a. there exists at least

two extremal infinite volume Gibbs statg and
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The proof can be found in Bovier Note. It is
based orchainingtecnigues, used by

Fisher-Frolich-Spencer (JSP 34 (1984)) in a
model with “no contours within contours”.

+1 —1 ~ :
In Zf\rmt — In ZF\PW ~ Z h;
iel\Iint

Can we verify the hypothesis of previous
Theorem?

Suppose we compute the Lipschtiz norm
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‘1n Zj{l[h] — In Zj{l[h’] —In Zj{,l h] + In Z+ [h’”

Oln 7!

h lie A\ (ANAY)

| Oh,;
e A\ (ANAY)

In ZH
+ Z (hi—hg)an 2

Oln Z 1
NN A
+ E (P hz)< .
1€ANA/

<08 Y |hi—hil+

1€AAN

~

7]

~

7]

~

7]

Oln 7

Oh;

~

7]

)
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+08sup | S (b = k) (i [Rl(3) = iRl (o0))

h lieANN

< OB\ |[AAN|||haan — Ryan e + 608

sup [ 37 (klA) ) = s lA00) ) Iaoae = Hac
1€ ANA/

comment: the expectation of; for i € A N A’ should
be almost the same, so one should prove that the last

line is~ |AAA|.
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If one shows this, then this would be an
alternative proof of phase transitions for IRFM In
d = 3. The only rigorous proof of phase
transitions ind = 3 is BK.

Theorem [BK]Letd > 3, assuméh; I.1.d.

random variablesP||h;| > h] < e~ for s
sufficiently small. Then there exigis < oo,
So > 0, so that fors > Gy, s < Sy, piy g

converge to disjoint Gibbs measur,eﬁ.
The proof is based on the RG analysis.
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Absence of phase transitions.
Alzenman-Wehr method

The Imry-Ma argument predicts that the random
bulk energies might overcome the surface terms.
Then the particular realization of the random
flelds determines locally the orientation of the
spins.

The effects of the boundary conditions are not
felt in the interior of the system.

This implies an unique Gibbs state. Rigorously
proven by A-W(1990).

The proof is based on the RG analysis.
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Here the argument (roughly):

Fix A C Z2. Consider the difference of the free
energy

Z;A
fﬁ)A—F — fﬁ,A— = In —Z_’ < C’@A|
B,A

faar — fan- = C(B)VI|AIW

W standard gaussian variable.
Then

C(B)VIAW < C|oA|
In d = 2, this impliesC'(3) = 0.
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C'(6) is linked to an order parameter:
magnetization.

C'(6) = 0 impliesm = 0, the uniqueness of the
Gibbs state.

| will specialize the proof only in the IRFM (the
one described).
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Translation covariant states

Let (€2, B, P) the probability space. Léf the

translation grou@? on ). We assume thd is
Invariant under the action daf.
(2, B,P, T) is stationary and ergodic.

In the casé; I.1.d. random variables, stationarity
and ergodicity are trivially satisfied.

The action ofl’ Is

(hay [ Tyw], - o s e [Tyw]) = (hayay[W)s -5 By [w])
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We use thaf) has an affine structure:

(hg,[w+ &', ..., hy [w+ &)

n

= (he, [w] + ha, [W], - P, [W] + g, [W])
Define
Q= {0w € Q:3A C Z% Vy # A, hy[dw] =0}
A finite
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A random Gibbs measure; Is called covariant if

Vo € Z¢, f continuous,

ualwl(Toof) = palTol(f)  as.

Vow € )y, for a.a.w

)

K3 [w + 5w] (f) 1 [w]( —B[H (w+5w)—H(w)])

Note that ifow Is supported on\

H(w + w) Z oih;|dw]
€A
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Theorem Consider the RFIM. Then there exists
two covariant random Gibbs measures|w] and

pz|w] so that

~lw] = lim gy a.

p Wl lim Haplw]  aaw
Suppose that for som# . [w] = piz[w]. Then
for this fixed value off the Gibbs measure for
RFIM is unique for a.aw.

proof By FKG (Fortuin, Kasteleyn, Ginibre)
Vw € (1, one constructﬁg (w] as limits of local

specifications with constant boundary conditions

along arbitrary ¢ independent) increasing and
ab<sorbina seduences of finite voluimes ™"




The functionw — p7[w] are measurable (limit of
measurable functions).

Are covariant states?

Property (1) requires the independence of the
limit from the chosen sequencg,, which holds
In the case at hand. We have

MX,g[w] (T o f) = NX+x,5[TxW](f)

thenyuy [w](T-..f) = pi[T:w](f). (consequence
of FKG inequalities)

Properties (2) holds trivially for local
specifications with\ large enough to suppoib.
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Result for system satisfying FKG

lim ,u;g’ A = ,ug A, C Z°

n—oo

exists and it Is independent on the particular
sequence. Same holds fof .

/LZ andp; are extremal Gibbs measures.

pg(f) < pp(f) < pg(f)
wheref Is any increasing bounded continuous
function.
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Note If FKG do not hold, then two difficulties

measurabllity of the limit. This can be solved
Introducing the “metastates”

one needs comparison results between local
specifications in different volumes.
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Order parameters
The monotonicity properties of FKG inequalities

imply thatif p}[w] = pg[w] Pa.s.then there
exists an unique Gibbs stabea.s.

Further in the translational invariant case,
unigueness implies that the total magnetization

vanishes.
Set the total magnetization
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L emma Suppose: a covariant Gibbs state.
Then,Pa.s.m"|w| exists and it is independent on

w.
proof: By the covariance of;,
1
mtlw| = lim — T wl(o

The u|wl|(og) is a bounded measurable function
of w.
The since€), B, P, T) is stationary and ergodic,
the limit existsPa.s. and

m! = E[u](0o)].
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Lemma In the RFIM

m‘L—m_:O(:),ug:,ug

proof: Them” = E|ul(oy)] implies thatP a.s.
0=m"—m" =E[u"(0:) — u (0y)]

Sinceu™(o0;) — p~(o;) > 0 and there are only
countable many sites almost surely for all
i € Z¢

p (o) = p (o).
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Generating functions
Setf =1)

Gy

1
—In u|w (eﬁ 2ieA hi""’) :
3 p|w]

Note: if ;1 IS a covariant state

1
o

wherew, is such that;|wa] = h;|w] if 7 € A,
hi[wA] =01f 7 € A

G/f\[w] = In plw — wy| (65 2ien h’“’i)
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0 i) plw —wpl(oe? 2ealion)
ahiGA o ,u[w—wA]((B_ﬁzeAha) lu[w](UZ)
Then
0 u*] L
1D 8hiGA = m
Define:
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Important to show the following bound.
Lemma For all 3 and volume\

’FA < 2|8A’

proof: First step: express, in terms of measures
that do not depend on the disorder witkiin

1B

+131 (68 2 ien hioi
B VA

Iu_ w (66 Zz’EA h’iai)
P lw — wy] (677 Ziea i)
ptw — wa] (e 2ealior)

=E |In 1By
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Use spin-flip symmetry and symmetry of the
distribution ofh

prw] (f(o)) = p[=w] (f(=0)) *

1By since *
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We have the ratio of two expectations with
respect to the same measure.

OAC

X E eﬁ(zz’,jez\ 0i0j+ icn jenc Oi0j+D i hioi)

P w — wal(oae)
oyl

O AC

X E eﬁ(zi,jEAJin_zieA,jeAcJigj_ZieAhiUz‘)
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< 2010Al 5,

Z phw — wal(oae)

O AC
ZA

X E eﬁ(zi,jeA Uigj""Zz'eA,jeAC Uiaj—zq;@\ hio;)
OA

p— 626|6A‘ _BZiEA hzaz) .

' [w — wy] (6

random — p.46



L ower bound on the Laplace transform of £
L emma Suppose that for some> 0, the

distributions ofh satisfiedE[|h|*™*] < C. Then

tFy t2b?
liminf E exp{—A Zexp{T}

A, A]Too VA
b> > E [E[Fa|Bo)?] -

The last two lemmas contradict each other in
d < 2, unlessh = 0.

Butb = 0 iImpliesm = 0 then the uniqueness of
the Gibbs state.
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proof: Order the pointg € A In lexicographic
order.

Bri, o — algebragenerated B¥,. }. cnz<a,

Al Al

Fy =Y (E[Fy|By] — E[Fy|Bai-1]) ZY

1=1
where

Yi = E|F\|Byi| — E[FA|Bpi-1]
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Then
Eexp{tFs}] = E[..E [e"?|By1] ]
We need a lower bound on terms
E [em BA,i—l} .

We use the following¥z € R, a > 0 there exists
g(a) | 0, whena T 0

1
et > 14+ x+ 5(1 — g(a))x2]|‘x‘§a

2 2

X 2,— %

14+ —>c¢ ’
9 =

I~ €

N[ =

when |z| < a.
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E[X] = 0, setf(a) = (1 — g(a))e~* we obtain
E[eX] > o5 M(@EX 1y <a]
We obtain

D [etYi By i—l} 6(_§f(a)E[Yz‘21{t|Y@'|§a}HBA,z’—1]> > q

The last quantity i$3, ; measurable, then
repeating
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where

Al

V |A| ZE [Y2]I{t|Y<a\/T}’BAz 1} :

Suppose that there exists independent ona:
lim Vy(a) =C in probability.

[A]—00
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Since ind = 2,

Fy| < 2|0A] = 24/]A]

tFA t2
liminf K {eﬁ} > ezC
A17Z2

Namely, for; 4+ - =1,p > 1

i {6 A ff(a)VA(a)}

(] e
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lim sup (E [e_qéf(a)VA(a)} ) “ < e—éf(a)(?

Sincelim, . f(a) =1,
lim sup (hm sup (E {eqtzf(aWA(a)} ) q) < ¢ 2C
a—~0 A
Then

piﬂL £2
lim inf {e \/T} S pic
A1Z2
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Changing variable’ = tp

t’FA (t/>20
liminf £ {evA} > e Vp > 1
A17Z2

Then wherp — 1 the result!!

to show: V, (a) admitslimit and to identify it.

random — p.54



We apply the ergodic Theorem.
B> = o-algebra generated by, j < i
< refers to lexicographic ordering. Define
Wi=E|Gh -Gy IBT| —E |Gy - GY IBY,

We have

Importanti¥; Is shift covariant, i.e.

Wi [w] — W() [T_iw].
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By ergodic theorem one has

A
lim S E[W2BS,] =E[WZ  inprob

comment: Apply ergodic theorem to
f(w) =E [W5]57 ]
then

D [Wi2’8z'<——1] = [Wz2|8ﬂ = [(T-w)
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Further we show that

Al
. LS g [y
A | TAT .1E[YZ’ 1 yay iy Brict] > 2| =0

By Chebyshev inequality, compute

A
1 § 2
- m —1 - [3/2 ]I{t|Y73>a\/T}|BA’i1}

A
1 2
N Z;E [Y@' “{thﬁJ <
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We have that
E {qu} — E [E[Wi|BA]*] < E [W@ﬂ
by Jensen inequality

rrrrrrrrrrr



One shows
Wo| < Clhy

If the 2¢ moments of: are finite therE [W(ﬂ <C.
By Chebyshev inequality

a CRE[WE]
P “Yi’ > TV \A\} < 2IA]
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Then

A
1 2

= WE;E {Yi Ly o/ B

_ PEWS

— a2’A’2

which goes to 0 whem\| — oco. The proof is done if

K [3/2-2|BA77;_1] — K& [Wf’lgf_l] — () N prob
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This can be shown easily:

B { (B [¥2By] ~ E[W2IBE,])} — 0

Namely

E [Y?[Bui1] = E | (EIWi[By)°

< E[E[W?|BA]|Bri] = E [E]

Denotef = E[W?2|B:,].




Then since

lim E |(f — E[f|B])’| — 0

| A]—00

we obtain the thesis.
Further, letB5, the sigma-algebra generated by the
single variabléeh

E[W5] = E[E[W;|Bo]] > E [(E[Wo|Bo])”|

random — p.62



E[Wy|Bo] = E[E {GT - GK‘BOS} Bo] = E[Fa|Bo)
since

EE|GY -Gy 1B | 1B] =E |6 —ch | =0
Finally observe that

%E[FMB()] = K[ (00) = 1™ (00)|Bo]
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Set
f(h) = E[F|By) where h = holw].
If E [f?| =0, then
f(h)=0 Pa.s.
on the support of the distribution af Since
0< f'(h) <1
f'(h) =0 Pa.s

then
pr—p =0
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Theorem [AW] In the IRFM, whose distribution is
not concetrated on a single point and possesses at
least2 + z finite moments, for some> 0, iIf d < 2
there exists an unigue infinite-volume Gibbs state.

Comments Soft result. It does not say anything more
precise about the properties of the Gibbs state. How
does the Gibbs state at high temperature distinguish
itself from the one at low temperature?

At low temperature for largé the Gibbs state will con-
centrate near configurations = stgnh;. For smallf
more complicated behaviour is expected.
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