Nonequilibrium steady states of the aerogel dynamics

Julien Reygner

Université Pierre et Marie Curie & École des Ponts ParisTech

Rencontres de Probabilités, Rouen 9th September 2013

Aerogels

- ► Aerogels: porous material derived from gels, in which gas molecules are confined in solid cells.
- Very low thermal conductivity, used in aeronautics and thermal isolation of buildings.

Microscopic evolution

Microscopic model introduced by Gaspard and Gilbert (Phys. Rev. Lett., '08):

Hamiltonian evolution with $H(\mathbf{q}, \mathbf{p}) = \frac{1}{2}|\mathbf{p}|^2 + V(\mathbf{q})$,

$$V(\mathbf{q}) = \begin{cases} 0 & \text{if } q \in \Omega, \\ \infty & \text{if } q \notin \Omega, \end{cases}$$

for
$$\Omega \subset (\mathbb{R}^d)^N$$
.

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

Describes the following dynamics:

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

Describes the following dynamics:

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

Describes the following dynamics:

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

Describes the following dynamics:

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

The complete exchange model

Toy model of such an Hamiltonian: the Complete Exchange Model. (Prosen and Campbell, Chaos '05; Gilbert and Lefevere, Phys. Rev. Lett. '08)

•
$$d = 1, \ \Omega = \{q^1, \dots, q^N \in [0, 1], |q^i - q^{i+1}| \le 1 - a\}$$
 for $0 < a < \frac{1}{2}$.

Describes the following dynamics:

Thermal baths: stochastic velocity update at the boundary of the cell for the leftmost and rightmost particles.

Long time behaviour

Aim: long time behaviour of the process $X(t) = (\mathbf{q}(t), \mathbf{p}(t)) \in \Omega \times \mathbb{R}^N$.

- Piecewise Deterministic Markov Process, in particular, non Feller process.
- ▶ 'Very little stochasticity' ~→ difficult problem in general.

Remark: the number of null velocities is conserved, but the corresponding subspaces

$$\mathcal{X}_k := \left\{ (\mathbf{q}, \mathbf{p}) \in \Omega \times \mathbb{R}^N : \sum_{i=1}^N \mathbb{1}_{\{p^i = 0\}} = k \right\}$$

are negligible for $k \in \{1, \ldots, n\}$.

Ideal result: typical ergodicity

There exists a unique probability distribution π on $\Omega \times \mathbb{R}^N$ such that, for dqdp-almost all initial data,

$$\operatorname{Law}(X(t)) \xrightarrow[t \to +\infty]{} \pi.$$

Then π is a **nonequilbrium steady state**.

Plan

Thermal equilibrium and thermal baths

The stochastic billiard representation

Ergodicity of the observed Markov chain

Thermal equilibrium

Let $\phi^{1,+}(p)$, $\phi^{1,-}(p)$, $\phi^{N,+}(p)$ and $\phi^{N,-}(p)$ refer to the density updates:

Thermal equilibrium

Let $\phi^{1,+}(p)$, $\phi^{1,-}(p)$, $\phi^{N,+}(p)$ and $\phi^{N,-}(p)$ refer to the density updates:

System at thermal equilibrium if $\phi^{1,+} = \phi^{N,+} = \phi^+$, $\phi^{1,-} = \phi^{N,-} = \phi^-$. Then, a stationary probability distribution is given by

$$\pi(\mathrm{d}\mathbf{q}\mathrm{d}\mathbf{p}) = \frac{1}{|\Omega|} \mathbb{1}_{\{\mathbf{q}\in\Omega\}} \Phi(p^1) \cdots \Phi(p^N) \mathrm{d}\mathbf{q}\mathrm{d}\mathbf{p},$$

where $\Phi(p)dqdp$ is the steady state of an isolated particle.

Motion of a single particle

Stationary distribution for (q(t), p(t)): $\Phi(p) dq dp$, where

$$\begin{split} \Phi(p) &= \frac{1}{\mu^+ + \mu^-} \left(\mathbbm{1}_{\{p>0\}} \frac{\phi^+(p)}{p} + \mathbbm{1}_{\{p<0\}} \frac{\phi^-(-p)}{-p} \right), \end{split}$$
 with $\mu^+ := \int_{p=0}^{+\infty} \frac{\phi^+(p)}{p} \mathrm{d}p, \ \mu^- := \int_{p=0}^{+\infty} \frac{\phi^-(p)}{p} \mathrm{d}p. \end{split}$

- > Proof: based on Renewal Theorem (Lefevere and Zambotti, J. Math. Phys. '11).
- By the way: very interesting large deviation principle when $t \to +\infty$.
- If $\phi^+(p) = \phi^-(p) = \beta p e^{-\frac{\beta p^2}{2}}$, then $\Phi(p)$ is the Maxwell-Boltzmann distribution at inverse temperature β .

Plan

Thermal equilibrium and thermal baths

The stochastic billiard representation

Ergodicity of the observed Markov chain

The two particle model

We no longer assume thermal equilibrium.

- ► The problem is difficult.
- Drastic simplification: N = 2.

Then, the model rewrites in terms of a stochastic billiard on the table Ω :

The two particle model

We no longer assume thermal equilibrium.

- ► The problem is difficult.
- Drastic simplification: N = 2.

Then, the model rewrites in terms of a stochastic billiard on the table Ω :

specular reflection on the oblique boundaries,

The two particle model

We no longer assume thermal equilibrium.

- ► The problem is difficult.
- Drastic simplification: N = 2.

Then, the model rewrites in terms of a stochastic billiard on the table Ω :

specular reflection on the oblique boundaries,

The two particle model

We no longer assume thermal equilibrium.

- ► The problem is difficult.
- Drastic simplification: N = 2.

Then, the model rewrites in terms of a stochastic billiard on the table Ω :

- specular reflection on the oblique boundaries,
- **stochastic update** of the **normal velocity** on the other boundaries.

The two particle model

We no longer assume thermal equilibrium.

- ► The problem is difficult.
- Drastic simplification: N = 2.

Then, the model rewrites in terms of a stochastic billiard on the table Ω :

- specular reflection on the oblique boundaries,
- **stochastic update** of the **normal velocity** on the other boundaries.

Traps

Traps

Some degenerate initial data lead to periodic orbits:

Interesting initial data: $p^1 \neq 0$, $p^2 \neq 0$, and in the band, $p^1 + p^2 \neq 0$.

Traps

Some degenerate initial data lead to periodic orbits:

Interesting initial data: $p^1 \neq 0$, $p^2 \neq 0$, and in the band, $p^1 + p^2 \neq 0$.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

Unfolding the billiard trajectories

Classical trick in the study of polygonal billiards: unfolding the trajectories.

The sequence of observation times

The sequence of observation times

The sequence of observation times

The sequence of observation times

The sequence of observation times

To study the continuous-time process $(X(t))_{t\geq 0}$, we introduce a discretization in time along the sequence of observation times.

Let $(\tau_n)_{n\geq 0}$ be the sequence of observation times, $Y_n := X(\tau_n)$. Crucial remark: on $[\tau_n, \tau_{n+1})$, the components evolve independently!

Markov renewal process

Fact: the sequence $(Y_n, \tau_n)_{n>0}$ is a Markov renewal process.

(i.e. $(Y_n, \tau_{n+1} - \tau_n)_{n \ge 0}$ is a Markov chain with transition depending only on Y_n) In particular, $(Y_n)_{n \ge 0}$ is a **time homogeneous** Markov chain, with values in the space of **sections**

$$\mathcal{Y} := \bigcup_{(i,\varepsilon) \in \{1,2\} \times \{+,-\}} \mathcal{Y}_{\mathrm{bo}}^{i,\varepsilon} \cup \mathcal{Y}_{\mathrm{in}}^{i,\varepsilon} \cup \mathcal{Y}_{\mathrm{ou}}^{i,\varepsilon}$$

Plan

Thermal equilibrium and thermal baths

The stochastic billiard representation

Ergodicity of the observed Markov chain

Markov Renewal Theorem

The Markov Renewal Theorem allows to derive the long time behaviour of $(X(t))_{t\geq 0}$ from ergodic properties of $(Y_n)_{n\geq 0}$.

Markov Renewal Theorem (roughly)

If $(Y_n)_{n\geq 0}$ is positive Harris recurrent, then $(X(t))_{t\geq 0}$ is typically ergodic.

Harris recurrence (roughly)

 $(Y_n)_{n\geq 0}$ is Harris recurrent if there exist $R \subset \mathcal{Y}$, $\varepsilon > 0$ and $\lambda(\cdot)$ such that:

- ▶ Recurrence: $\forall y \in \mathcal{Y}$, $\mathbb{P}_y(\exists n \ge 1 : Y_n \in R) = 1$,
- Minorization: $\forall y \in R$, $\mathbb{P}_y(Y_1 \in \cdot) \geq \varepsilon \lambda(\cdot)$.
- Harris recurrence \implies existence and \propto -uniqueness of σ -finite stationary distribution.
- ► In addition, positivity ⇐⇒ existence of (a unique) stationary probability distribution.

We only explain how to construct R and prove the minorization condition.

The set R

The set R

Conclusion

Sequel of the proof:

- recurrence condition: tedious but OK,
- positivity: not OK yet (apart from thermal equilibrium)...

Conclusion:

- Unfolding the process allows to make interactions transparent for the dynamics,
- \blacktriangleright and provides a natural regenerative set R by analyzing the action of thermal baths.
- Extension of the argument to general N particle case: first requires to find a similar unfolding procedure.

Thank you for your attention!