# Noise induced escape problem and phase reduction 

## Christophe Poquet

Université Paris Diderot and Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
September, $10^{\text {th }} 2013$

## Simple example of phase reduction

Consider a dynamical system in $\mathbb{R}^{n}$ of the type

$$
\dot{X}_{t}=F\left(X_{t}\right)
$$

admitting a limit cycle.


On the limit cycle, it reduces to a phase dynamics

$$
\dot{\theta}_{t}=f\left(\theta_{t}\right)
$$

## Phase reduction and Kuramoto model

$N$ dynamical systems of $\mathbb{R}^{n}$ in interaction:

$$
\dot{X}_{t}^{k}=F_{k}\left(X_{t}^{k}\right)+G_{k}\left(X_{t}^{1}, \ldots, X_{t}^{N}\right),
$$

each isolated one $\dot{X}_{t}=F_{k}\left(X_{t}\right)$ admitting a limit cycle.


## Phase reduction and Kuramoto model

## Kuramoto's reduction

If the $N$ limit cycles are nearly identical and the interactions are weak, the model is well approximated by the dynamics of one-dimensional phases

$$
\dot{\theta}_{j}=\omega_{j}+\sum_{i=1}^{N} \Gamma_{i j}\left(\theta_{j}-\theta_{i}\right) \quad i=1 \ldots N
$$

where $\omega_{j}$ is the natural oscillation frequency of the $j^{\text {th }}$ limit cycle, and the the interactions are given by the functions $\Gamma_{i, j}$.

## Phase reduction for models perturbed with noise

Consider a system in $\mathbb{R}^{n}$ of the type

$$
\mathrm{d} X_{t}=F\left(X_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t}
$$

where $B_{t}$ is a $n$-dimensional Brownian motion, and such that the non-perturbed system $\dot{X}_{t}=F\left(X_{t}\right)$ admits a stable curve $M$, on which the dynamics is slow.



Escape problem for the model reduced on $M$

## Phase reduction for models perturbed with noise

Validity of phase reduction if :

- The escapes from a fixed point $A$ of $M$ occur with high probability close to $M$.

- The probability of these escape paths can be well approximated by studying the escape problem for the model restraint on $M$.


## Large deviations

Let $P_{x}^{\varepsilon}$ be the law (on the space $\left.C\left([T, 0], \mathbb{R}^{n}\right),-\infty<T<0\right)$ of the process

$$
\mathrm{d} X_{t}=F\left(X_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t}
$$

starting at $x$. The family $\left(P_{x}^{\varepsilon}\right)_{\varepsilon>0}$ satisfies a large deviation principle of speed $\varepsilon$ and rate function

$$
I_{T}^{x}(Y)=\left\{\begin{array}{cl}
\frac{1}{2} \int_{T}^{0}\left\|\dot{Y}_{t}-F\left(Y_{t}\right)\right\|^{2} \mathrm{~d} t & \text { if } Y \text { is absolutely continuous } \\
& \begin{array}{cl}
\text { and } Y_{T}=x \\
& \text { otherwise }
\end{array}
\end{array}\right.
$$

It means that for $\varepsilon$ small

$$
P_{x}^{\varepsilon}(O) \approx \exp \left(-\frac{1}{\varepsilon} \inf _{Y \in O} I_{T}^{x}(Y)\right)
$$

## Quasipotential

For a connected compact $K \subset \mathbb{R}^{n}$, and two points $A$ and $B$ of $K$ the quasipotential is defined by

$$
\begin{aligned}
W_{K}(A, B)=\inf \left\{I_{T}^{A}(Y): Y \in C([T, 0], K),-\infty\right. & <T<0 \\
& \left.Y_{T}=A, Y_{0}=B\right\}
\end{aligned}
$$

It represents the cost of reaching $B$ from $A$ with respect to the rate function $I_{T}$.

## Escape problem : the Freidlin-Wentzell theory

$$
\mathrm{d} X_{t}=F\left(X_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t}
$$

$A$ fixed point, $K$ compact smooth neighborhood included in the domain of attraction of $A$. Suppose moreover $F$ Lipschitz.


## Escape problem : the Freidlin-Wentzell theory

The first exit from $K$ occurs for $\varepsilon \rightarrow 0$ with high probability very close to the points $B \in \partial K$ satisfying $W_{K}(A, B)=\inf _{E \in \partial K} W_{K}(A, E)$.

The time of first escape $\tau^{\varepsilon}$ satisfies

$$
\mathbb{E}_{A}\left(\tau^{\varepsilon}\right) \approx \exp \left(\frac{1}{\varepsilon} W_{K}(A, B)\right)
$$

and

$$
\tau^{\varepsilon} / \mathbb{E}_{\boldsymbol{A}}\left(\tau^{\varepsilon}\right) \rightarrow \mathcal{E}(1)
$$

## Quasipotential : reversible case

If the system is reversible $(F=-\nabla V)$, and if the solution of the deterministic system $\dot{X}_{t}=-\nabla V\left(X_{t}\right)$ with initial condition $B$ converges to $A$ for $t \rightarrow \infty$, then

$$
W_{K}(A, B)=2(V(B)-V(A))
$$

Indeed:

$$
\begin{aligned}
& I_{T}^{A}(Y)=\frac{1}{2} \int_{T}^{0}\left\|\dot{Y}_{t}+\nabla V\left(Y_{t}\right)\right\|^{2} \mathrm{~d} t \\
& =\frac{1}{2} \int_{T}^{0}\left\|\dot{Y}_{t}-\nabla V\left(Y_{t}\right)\right\|^{2} \mathrm{~d} t+2 \int_{T}^{0} \nabla V\left(Y_{t}\right) \dot{Y}_{t} \mathrm{~d} t \\
& \\
& \quad=\frac{1}{2} \int_{T}^{0}\left\|\dot{Y}_{t}-\nabla V\left(Y_{t}\right)\right\|^{2} \mathrm{~d} t+2(V(B)-V(A))
\end{aligned}
$$

## Stable fixed point and infinite time paths

If $A$ is a stable fixed point and $F$ Lipschitz

$$
W_{K}(A, B)=\inf \left\{I_{-\infty}^{A}(Y): Y \in C((\infty, 0], K), \lim _{t \rightarrow-\infty} Y_{t}=A, Y_{0}=B\right\} .
$$

We call an optimal path an element of $C((\infty, 0], K)$ that realizes the infimum.

## Optimal paths and Euler Lagrange equation

## Euler Lagrange equation

If $F$ is $C^{2}$ and $Y$ is an optimal path, then for all $t_{1}<t_{2}$ such that $Y_{t} \in \dot{K}$ for all $t \in\left(t_{1}, t_{2}\right), Y \in C^{2}\left(\left(t_{1}, t_{2}\right), \mathbb{R}^{n}\right)$ and

$$
\ddot{Y}_{t}=D F^{\dagger}\left(Y_{t}\right) F\left(Y_{t}\right)+\left(D F\left(Y_{t}\right)-D F^{\dagger}\left(Y_{t}\right)\right) \dot{Y}_{t}
$$

where ${ }^{\dagger}$ denotes the transposition operator.

## Idea of proof

If $Y$ is an optimal path, it is the optimal way to link $Y_{t_{1}}$ to $Y_{t_{2}}$, and for $f$ smooth with $f\left(t_{1}\right)=f\left(t_{2}\right)=0$ and $\eta \in \mathbb{R}$ small

$$
\frac{1}{2} \int_{t_{1}}^{t_{2}}\left\|\dot{Y}_{t}+\eta \dot{f}_{t}-F\left(Y_{t}+\eta f_{t}\right)\right\|^{2} \mathrm{~d} t-\frac{1}{2} \int_{t_{1}}^{t_{2}}\left\|\dot{Y}_{t}-F\left(Y_{t}\right)\right\|^{2} \mathrm{~d} t \geqslant 0
$$

After expansion the left hand side becomes

$$
\begin{aligned}
\eta \int_{t_{1}}^{t_{2}}\left(\left\langle\dot{Y}_{t}, \dot{f}_{t}\right\rangle+\left\langle D F\left(Y_{t}\right) f_{t}, F\left(Y_{t}\right)\right\rangle-\right. & \left\langle\dot{f}_{t}, F\left(Y_{t}\right)\right\rangle \\
& \left.-\left\langle\dot{Y}_{t}, D F\left(Y_{t}\right) f_{t}\right\rangle\right) \mathrm{d} t+O\left(\eta^{2}\right)
\end{aligned}
$$

and the term of order $\eta$ can be reformulated as

$$
\int_{t_{1}}^{t_{2}}\left\langle f_{t},-\ddot{Y}_{t}+D F^{\dagger}\left(Y_{t}\right) F\left(Y_{t}\right)+D F\left(Y_{t}\right) \dot{Y}_{t}-D F^{\dagger}\left(Y_{t}\right) \dot{Y}_{t}\right\rangle \mathrm{d} t
$$

## A non reversible example

Model proposed by Maier and Stein (1995) :

$$
F\binom{x}{y}=\binom{x-x^{3}-(1+\delta) x y^{2}}{-\left(1+x^{2}\right) y}=-\nabla V\binom{x}{y}-\delta\binom{x y^{2}}{0}
$$

with $V(x, y)=-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+\frac{1}{2}\left(1+x^{2}\right) y^{2}$.
$\{y=0\}$ is stable, $(0,0)$ is a sell point, $(1,0)$ is a stable fixed point.


Figure: Optimal escape paths from $(1,0)$ for $\delta=0$ and $\delta=4$

## Perturbation of reversible models

We consider models of the type

$$
\mathrm{d} X_{t}=-\nabla V\left(X_{t}\right) \mathrm{d} t+\delta G\left(X_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t}
$$

where the deterministic reversible part $\dot{X}_{t}=-\nabla V\left(X_{t}\right)$ admits a stable curve $M^{0}$ of stationary solutions.


Figure: Example of such potential $V$ in $\mathbb{R}^{2}$.

## Link with the "Active Rotators"

The limit $N \rightarrow \infty$ of the "Active Rotators" model (each $\varphi_{t}^{j, N}$ represents a position on the circle $\mathbb{R} / 2 \pi \mathbb{R}$ )

$$
\mathrm{d} \varphi_{t}^{j, N}=\delta b\left(\varphi_{t}^{j, N}\right) \mathrm{d} t+\sum_{i=1}^{N} J\left(\varphi_{t}^{j, N}-\varphi_{t}^{i, N}\right) \mathrm{d} t+\mathrm{d} B_{t}^{j}
$$

is given by the PDE

$$
\partial_{t} p_{t}=\frac{1}{2} \Delta p_{t}-\nabla\left(p_{t} J * p_{t}\right)-\delta \nabla\left(p_{t} b\right)
$$

whose reversible part $\partial_{t} p_{t}=\frac{1}{2} \Delta p_{t}-\nabla\left(p_{t} J * p_{t}\right)$ admits a stable curve of stationary solutions.

## Perturbation of reversible models

$$
\mathrm{d} X_{t}=-\nabla V\left(X_{t}\right) \mathrm{d} t+\delta G\left(X_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t},
$$

and $M^{0}$ curve of stationary solutions for the deterministic model.
So for all $X \in M^{0}$

$$
\nabla V(X)=0
$$

Moreover we suppose that for all $X \in M$ and all vector $w$ normal to $M^{0}$ at $X$

$$
\langle H(X) w, w\rangle \geqslant \lambda\|w\|^{2} .
$$

With this hypothesis $M^{0}$ is a stable normally hyperbolic manifold.

## Normal Hyperbolicity

For a flow $\dot{X}_{t}=F\left(X_{t}\right)$ admiting an invariant curve $M$, define the linearized evolution semi-group $\Phi(Q, t)$ following a trajectory $Q_{t} \in M$ :

$$
\Phi(Q, 0) u=u \quad \text { for all } u \in \mathbb{R}^{n} \quad \text { and } \quad \partial_{t} \Phi(Q, t)=D F\left(Q_{t}\right) \Phi(Q, t)
$$

$M$ is normally hyperbolic if $\sup _{Q \in M} \nu(Q)<1$ and $\sup _{Q \in M} \sigma(Q)<1$, where ( $P_{Q}^{N}$ and $P_{Q}^{T}$ are the normal and tangent projections of $M$ at $Q$ )

$$
\begin{aligned}
& \nu(Q):=\inf \left\{a:\left(\frac{\|w\|}{\left\|P_{Q_{t}}^{N} \Phi(Q, t) w\right\|}\right) a^{t} \rightarrow 0\right. \\
& \left.\quad \text { as } \quad t \downarrow-\infty \quad \forall w \in N_{Q}\right\} \\
& \sigma(Q):=\inf \left\{b: \frac{\|w\|^{b} /\|v\|}{\left\|P_{Q_{t}}^{N} \Phi(Q, t) w\right\|^{b} /\left\|P_{Q_{t}}^{T} \Phi(Q, t) v\right\|} \rightarrow 0\right. \\
& \text { as } \left.t \downarrow-\infty \quad \forall v \in T_{Q}, w \in N_{Q}\right\} .
\end{aligned}
$$

## Persistence of the stable curve

## Theorem [Fénichel, 1972]

The deterministic perturbed system

$$
\dot{X}_{t}=-\nabla V\left(X_{t}\right)+\delta G\left(X_{t}\right)
$$

admits a stable normally hyperbolic curve $M^{\delta}$. Moreover $\operatorname{dist}\left(M^{0}, M^{\delta}\right)=O(\delta)$.


## Dynamics on $M^{\delta}$

For $\delta \geqslant 0$ consider a parametrization $q_{\delta}(\varphi)$ of $M^{\delta}$ satisfying $\left\|q_{\delta}^{\prime}(\varphi)\right\|=1$.
The deterministic evolution $\dot{X}_{t}=-\nabla V\left(X_{t}\right)+\delta G\left(X_{t}\right)$ reduced on $M^{\delta}$ is given for $\delta>0$ by

$$
\dot{\varphi}_{t}=b_{\delta}\left(\varphi_{t}\right),
$$

where

$$
b_{\delta}(\varphi):=\left\langle-\nabla V\left[q_{\delta}(\varphi)\right]+\delta G\left[q_{\delta}(\varphi)\right], q_{\delta}^{\prime}(\varphi)\right\rangle .
$$

## Dynamics on $M^{\delta}$

$b_{\delta} \rightarrow 0\left(M^{0}\right.$ is a curve of stationary solutions), and $b_{\delta} / \delta \rightarrow b_{0}$, with

$$
b_{0}(\theta):=\left\langle G\left[q_{0}(\theta)\right], q_{0}^{\prime}(\theta)\right\rangle .
$$

Suppose that the system $\dot{\theta}=b_{0}(\theta)$ admits a fixed point $\theta^{0}$ with $b_{0}^{\prime}\left(\theta^{0}\right)<0$ and $\left[\theta^{0}-\Delta_{1}, \theta^{0}+\Delta_{2}\right]$ is included in its domain of attraction

Then for all $\delta$ small enough, $\dot{\varphi}_{t}=b_{\delta}\left(\varphi_{t}\right)$ admits also a fixed point $\varphi_{A^{\delta}}$, with $\left[\varphi_{A^{\delta}}-\Delta_{1}, \varphi_{A^{\delta}}+\Delta_{2}\right]$ included in its domain of attraction.


## Consider the tube $U^{\delta}$ as follows :



Define $W_{\delta}$ the quasipotential associated to the compact $U^{\delta}$ and the process

$$
\mathrm{d} X_{t}=-\nabla V\left(X_{t}\right) \mathrm{d} t+\delta G\left(X_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t}
$$

$W_{\delta}^{\text {red }}$ the (1-dimensional) quasipotential associated to the compact [ $\varphi_{A^{\delta}}-\Delta_{1}, \varphi_{A^{\delta}}+\Delta_{2}$ ] and the one-dimensional process

$$
\mathrm{d} \varphi_{t}=b_{\delta}\left(\varphi_{t}\right) \mathrm{d} t+\sqrt{\varepsilon} \mathrm{d} B_{t}^{1} .
$$

In fact, for $\varphi \in\left[\varphi_{A^{\delta}}-\Delta_{1}, \varphi_{A^{\delta}}+\Delta_{2}\right], W_{\delta}^{\text {red }}\left(\varphi_{A^{\delta}}, \varphi\right)=2 \int_{\varphi_{A^{\delta}}}^{\varphi} b_{\delta}\left(\varphi^{\prime}\right) \mathrm{d} \varphi^{\prime}$.

## Theorem (P. 2013)

For $\delta$ small enough, if $B^{\delta} \in \partial U^{\delta}$ satisfies

$$
W_{\delta}\left(A^{\delta}, B^{\delta}\right)=\inf _{E \in \partial U^{\delta}} W_{\delta}\left(A^{\delta}, E\right)
$$

then $B^{\delta} \in S_{1} \cup S_{2}$ and

$$
\begin{aligned}
W_{\delta}\left(A^{\delta}, B^{\delta}\right)=W_{\delta}^{r e d}\left(\varphi_{A^{\delta}}, \varphi_{B^{\delta}}\right) & +O\left(\delta^{3}|\log \delta|^{3}\right) \\
= & 2 \int_{\varphi_{A^{\delta}}}^{\varphi_{B^{\delta}}} b_{\delta}(\varphi) \mathrm{d} \varphi+O\left(\delta^{3}|\log \delta|^{3}\right)
\end{aligned}
$$



## Corollary

For $\delta$ small enough and $\varphi \in\left[\varphi_{A^{\delta}}-\Delta_{1}, \varphi_{A^{\delta}}+\Delta_{2}\right]$ we have

$$
W_{\delta}\left(A^{\delta}, q_{\delta}(\varphi)\right)=W_{\delta}^{\text {red }}\left(\varphi_{A^{\delta}}, \varphi\right)+O\left(\delta^{3}|\log \delta|^{3}\right)
$$

$$
=2 \int_{\varphi_{A^{\delta}}}^{\varphi} b_{\delta}\left(\varphi^{\prime}\right) \mathrm{d} \varphi^{\prime}+O\left(\delta^{3}|\log \delta|^{3}\right)
$$



## Idea of proof

- $b_{\delta}=O(\delta)$, and thus $W_{\delta}^{\text {red }}=O(\delta)$.
- The reversible part of $W_{\delta}\left(A^{\delta}, E\right)$ is $2\left(V(E)-V\left(A^{\delta}\right)\right)$. Since for $E$ close to $M^{0}$ we have

$$
V(E)-V\left(M^{0}\right) \sim \lambda \operatorname{dist}\left(E, M^{0}\right)^{2}
$$

for $E$ such that $\operatorname{dist}(E, M)=O\left(\delta^{1 / 2}\right)$ we have

$$
\begin{aligned}
V(E)-V(A)=V(E)-V\left(M^{0}\right)-\left(V\left(A^{\delta}\right)-V( \right. & \left.\left.M^{0}\right)\right) \\
& \sim \lambda \delta+O\left(\delta^{2}\right)
\end{aligned}
$$

Since $\operatorname{dist}\left(M, M^{\delta}\right)=O(\delta)$ going at a distance $C \delta^{1 / 2}$ from $M^{\delta}$ with $C$ large is more expensive than exiting the tube by staying on $M^{\delta}$.

## Idea of proof

If $G=-\nabla g$, the solutions of the Euler-Lagrange equation are the deteministic solution of $\dot{X}_{t}=-\nabla V\left(X_{t}\right)+\delta G\left(X_{t}\right)$ time reversed.


Figure: Solutions of E-L if $G=-\nabla g$.

## Idea of proof

Euler-Lagrange equation :

$$
\begin{aligned}
\ddot{Y}_{t}=\left(H\left(Y_{t}\right)-\delta D G^{\dagger}\left(Y_{t}\right)\right)\left(\nabla V\left(Y_{t}\right)\right. & \left.-\delta G\left(Y_{t}\right)\right) \\
& +\delta\left(D G\left(Y_{t}\right)-D G^{\dagger}\left(Y_{t}\right)\right) \dot{Y}_{t}
\end{aligned}
$$



Figure: Shape of a solution of E-L if $G$ is not a gradient.

