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Introduction

The statistical mechanics of a system at thermal equilibrium is encoded
in the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic Free
Energy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems at
equilibrium:
(i) Observables are mean values w.r.t. the canonical measure.
(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) that
are out of reach of Classical Thermodynamics.
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Systems far from equilibrium

Consider a Stationary Driven System in contact with reservoirs at
different potentials: no microscopic theory is yet available.

R1

J

R2

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

In the steady state, a non-vanishing macroscopic current J flows.

Our aim is to study the statistics of this current and its large
deviations starting from a microscopic model.
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Rare Events and Large Deviations

Let ε1, . . . , εN be N independent binary variables, εk = ±1, with
probability p (resp. q = 1− p). Their sum is denoted by SN =

∑N
1 εk .

• The Law of Large Numbers implies that SN/N → p − q a.s.

• The Central Limit Theorem implies that [SN − N(p − q)]/
√

N
converges towards a Gaussian Law.

One can show that for −1 < r < 1, in the large N limit,

Pr

(
SN

N
= r

)
∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = (p − q).

The function Φ(r) is a Large Deviation Function: it encodes the
probability of rare events.

Φ(r) =
1 + r

2
ln

(
1 + r

2p

)
+

1− r

2
ln

(
1− r

2q

)
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Density fluctuations in a gas

V, T

N

v
n

Mean Density ρ0 = N
V

In a volume v s. t. 1� v � V
〈 nv 〉 = ρ0

The local density varies around ρ0 . Typical fluctuations scale as
√

v/V .

The probability of observing large fluctuations is given by

Pr
(n

v
= ρ
)
∼ e−v Φ(ρ) with Φ(ρ0) = 0

This Large Deviation Function for density fluctuations is related to the
free energy per unit volume.
Large deviation functions may play the role of potentials in
non-equilibrium statistical mechanics.
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Classical Transport in 1d: ASEP

A paradigm of a non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β
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J

R2
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q 1

γ δ

1 L

RESERVOIRRESERVOIR
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Large Deviations of the Total Current

Let Yt be the total charge transported through the system (total current)
between time 0 and time t.

In the stationary state, a non-vanishing mean-current: Yt

t → J

The fluctuations of Yt obey a Large Deviation Principle:

P

(
Yt

t
= j

)
∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Equivalently, the moment-generating function, which when t →∞,
behaves as 〈

eµYt
〉
' eE(µ)t

They are related by Legendre transform: E (µ) = maxj (µj − Φ(j))

Large deviation functions play an important role in non-equilibrium
statistical mechanics (Fluctuation Theorem).
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The Exclusion Process

q p p pq

Asymmetric Exclusion Process. A paradigm for non-equilibrium
Statistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian.

The probability Pt(C) to find the system in the microscopic configuration
C at time t satisfies

dPt(C)

dt
= MPt(C)

The Markov Matrix M encodes transitions rates amongst configurations.

K. Mallick Fluctuations of the Current in the Open Exclusion Process



ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.
Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

APPLICATIONS

• Traffic flow.

• Sequence matching.

• Brownian motors.
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Elementary Model for Protein Synthesis

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).
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The Hydrodynamic Limit: Diffusive case

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The typical evolution of the system is given by the hydrodynamic
behaviour:

∂tρ =
1

2
∇2ρ− ν∇σ(ρ) with σ(ρ) = ρ(1− ρ)

(Lebowitz, Spohn, Varadhan)

This is a Burgers type equation.
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Fluctuating Hydrodynamics

Fluctuations are taken into account in the following manner.
Consider Yt the total number of particles transfered from the left
reservoir to the right reservoir during time t.

limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ)νL for (ρ1 − ρ2) small

limt→∞
〈Y 2

t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

Then, the equation of motion is obtained as:

∂tρ = −∂x j with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x , t)

where ξ(x , t) is a Gaussian white noise with variance

〈ξ(x ′, t ′)ξ(x , t)〉 =
1

L
δ(x − x ′)δ(t − t ′)

For the symmetric exclusion process, the ‘phenomenological’ coefficients
are given by

D(ρ) =
1

2
and σ(ρ) = ρ(1− ρ)
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Large Deviations at the Hydrodynamic Level

What is the probability to observe an atypical current j(x , t) and the
corresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T ?

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Use fluctuating hydrodynamics to write the Large-Deviation Functional
as a path-integral
→ Macroscopic Fluctuation Theory of Jona-Lasinio et al.

I(j , ρ) =

∫ T

0

dt

∫ 1

0

dx
(j − νσ(ρ) +∇ρ)2

2σ(ρ)

with the constraint: ∂tρ = −∇.j
This leads to a variational procedure to control a deviation of the density
and of the associated current: an optimal path problem.

A general framework but the corresponding Euler-Lagrange
equations can not be solved in general.

For a non-vanishing external field, the M. F. T. does not apply
(Jensen-Varadhan Large Deviation Theory).
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Large Deviations: Profile vs Current

The probability of observing an atypical density profile in the steady
state was calculated starting from the exact microscopic solution of the
exclusion process (B. Derrida, J. Lebowitz E. Speer, 2002):
The Large Deviation Functional for the symmetric case ν = 0 is given by

F({ρ(x)}) =

∫ 1

0

dx

(
B(ρ(x),F (x)) + log

F ′(x)

ρ2 − ρ1

)
where B(u, v) = (1− u) log 1−u

1−v + u log u
v and F (x) satisfies

F
(
F ′2 + (1− F )F ′′

)
= F ′2ρ with F (0) = ρ1 and F (1) = ρ2 .

This functional is non-local as soon as ρ1 6= ρ2.

Note that in the case of equilibrium, for ρ1 = ρ2 = ρ̄, we recover

F({ρ(x)}) =

∫ 1

0

dx

{
(1− ρ(x)) log

1− ρ(x)

1− ρ̄
+ ρ(x) log

ρ(x)

ρ̄

}

Our aim is to study the statistics of the current and its large
deviations starting from the microscopic model.
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1. ASEP on a ring and

Bethe Ansatz
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Large Deviations of the Current on a ring

L

N )(Ω =

N  PARTICLES

L SITES

x  asymmetry parameter

1

x

CONFIGURATIONS

Total current Yt , total distance covered by all the N particles, hopping
on a ring of size L, between time 0 and time t.

WHAT IS THE STATISTICS of Yt?
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Master Equation for the total current

Let Pt(C,Y ) be the joint probability of being at time t in configuration C
with Yt = Y . The time evolution of this joint probability can be deduced
from the original Markov equation, by splitting the Markov operator

M = M0 + M+ + M−

into transitions for which ∆Y = 0, +1 or -1.

dPt(C,Y )

dt
=

∑
C′

M0(C, C′)Pt(C′,Y )

+
∑
C′

M+(C, C′)Pt(C′,Y − 1)

+
∑
C′

M−(C, C′)Pt(C′,Y + 1)
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The Laplace transform of Pt(C,Y ) with respect to Y , defined as

P̂t(C, µ) =
∑
Y

eµY Pt(C,Y ),

satisfies a dynamical equation governed by the deformation of the
Markov Matrix M, obtained by adding a jump-counting fugacity µ:

dP̂t

dt
= M(µ)P̂t

with
M(µ) = M0 + eµM+ + e−µM−

The Matrix M(µ) is not a Markov Matrix in general (it does not conserve
probability). But it is a matrix with positive off-diagonal entries and the
Perron-Frobenius Theorem can still be applied: M(µ) has a unique
dominant eigenvalue, denoted by E (µ), with eigenvector Fµ(C)

M(µ).Fµ = E (µ)Fµ

When t →∞, we have

P̂t(C, µ) ∼ eE(µ)tFµ(C)
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Cumulant generating function

From the previous result, one deduces that when t →∞ :〈
eµYt

〉
' eE(µ)t

The cumulant generating function E (µ) is the eigenvalue with maximal
real part of the deformed operator M(µ)

M(µ) = M0 + eµM+ + e−µM−

corresponding to splitting the Markov operator M = M0 + M+ + M−
according to the increments of the total current.

The moment-generating function E (µ) is the dominant eigenvalue of a
µ-deformed process.

On a ring, the Matrix M(µ) defines an integrable system,
solvable by Bethe Ansatz.
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The Bethe Ansatz

Eigenvector ψ of M(µ) written as a linear combination of plane waves,
with pseudo-momenta given by z1, . . . zN :

ψ(x1, . . . , xN) =
∑
σ∈ΣN

Aσ
N∏
i=1

zxi
σ(i)

The Bethe Equations provide us with the quantification of the zi ’s:

zL
i = (−1)N−1

N∏
j=1

xe−µzizj − (1 + x)zi + eµ

xe−µzizj − (1 + x)zj + eµ

The eigenvalues of M(µ) are

E (µ; z1, z2 . . . zN) = eµ
N∑
i=1

1

zi
+ xe−µ

N∑
i=1

zi − N(1 + x) .

The Bethe equations do not decouple unless x = 0
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Totally Asymmetric Case (Derrida Lebowitz 1998)

For x = 0 on a ring, E (µ) is calculated thanks to the decoupling property
of the Bethe equations.
The structure of the solution is given by a parametric representation of
the cumulant generating function E (µ):

µ = −1

L

∞∑
k=1

[kL]!

[kN]! [k(L− N)]!

Bk

k
,

E = −
∞∑
k=1

[kL− 2]!

[kN − 1]! [k(L− N)− 1]!

Bk

k
.

Mean Total current:

J = lim
t→∞

〈Yt〉
t

=
N(L− N)

L− 1

Diffusion Constant:

D = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
=

LN(L− N)

(L− 1)(2L− 1)

C 2N
2L(

CN
L

)2

Exact expressions for the large deviation function.
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The General Case (K. M, S. Prolhac, 2007-10)

For arbitrary asymmetry x on a ring, The function E (µ) is found by
functional Bethe Ansatz, again in a parametric form:

µ = −
∑
k≥1

Ck
Bk

k
and E = −(1− x)

∑
k≥1

Dk
Bk

k

Ck and Dk are combinatorial factors enumerating some tree structures.
There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

such that Ck and Dk are given by complex integrals along a small
contour that encircles 0 :

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

The function WB(z) contains all information about the current statistics.
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The function WB(z) is the solution of a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

where

F (z) = (1+z)L

zN

The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K (z1, z2)

with the kernel

K (z1, z2) = 2
∑∞

k=1
xk

1−xk

{(
z1

z2

)k
+
(

z2

z1

)k}
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Solving this Functional Bethe Ansatz equation to all orders enables us to
calculate cumulant generating function. For x = 0, the TASEP result is
readily retrieved.

The function WB(z) also contains information on the 6-vertex model
associated with the ASEP.

From the Physics point of view, the solution allows one to

Classify the different universality classes (KPZ, EW).

Study the various scaling regimes.

Investigate the hydrodynamic behaviour.
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Cumulants of the Current

• Mean Current: J = (1− x)N(L−N)
L−1 ∼ (1− x)Lρ(1− ρ) for L→∞

• Diffusion Constant: D = (1− x) 2L
L−1

∑
k>0 k2 CN+k

L

CN
L

CN−k
L

CN
L

(
1+xk

1−xk

)
• Third cumulant (Skewness): → Non Gaussian fluctuations.

E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3

E3

6L2 = 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN−i

L CN+j
L CN−j

L

(CN
L )4 (i2 + j2) 1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN−i
L CN−j

L CN+i+j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

CN+i
L CN−i

L

(CN
L )2

i2

2

(
1+x i

1−x i

)2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2−

(1−x)N(L−N)
6(L−1)(3L−1)

C 3N
3L

(CN
L )3
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• Diffusion Constant: D = (1− x) 2L
L−1

∑
k>0 k2 CN+k

L

CN
L

CN−k
L

CN
L

(
1+xk

1−xk

)
• Third cumulant (Skewness): → Non Gaussian fluctuations.

E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3

E3

6L2 = 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN−i

L CN+j
L CN−j

L

(CN
L )4 (i2 + j2) 1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN−i
L CN−j

L CN+i+j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

CN+i
L CN−i

L

(CN
L )2

i2

2

(
1+x i

1−x i

)2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2−

(1−x)N(L−N)
6(L−1)(3L−1)

C 3N
3L

(CN
L )3
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Full large deviation function (weak asymmetry)

E
(µ

L

)
' ρ(1− ρ)(µ2 + µν)

L
− ρ(1− ρ)µ2ν

2L2
+

1

L2
ψ[ρ(1− ρ)(µ2 + µν)]

with ψ(z) =
∞∑
k=1

B2k−2

k!(k − 1)!
zk
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2. Current Fluctuations

in the open ASEP
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The Current in the Open System

The fundamental paradigm

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

NB: the asymmetry parameter in now denoted by q.
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Matrix Ansatz for ASEP with Open Boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The stationary probability of a configuration C is given by a Matrix
Product Representation (DEHP 1993):

P(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi )E ) |V 〉 .

where τi = 1 (or 0) if the site i is occupied (or empty).
The operators D and E , the vectors 〈W | and |V 〉 satisfy

D E − qE D = D + E

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |
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The Phase Diagram

LOW  DENSITY

HIGH   DENSITY

MAXIMAL 

CURRENT

ρ

1 − ρ

a

b

1/2

1/2

ρa = 1
a+1 : effective left reservoir density.

ρb = b
b+1 : effective right reservoir density.

a =
(1− q − α + γ) +

√
(1− q − α + γ)2 + 4αγ

2α

b =
(1− q − β + δ) +

√
(1− q − β + δ)2 + 4βδ

2β
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Current Fluctuations in the Open ASEP

The observable Yt counts the total number of particles exchanged
between the system and the left reservoir between times 0 and t.

Hence, Yt+dt = Yt + y with

y = +1 if a particle enters at site 1 (at rate α),

y = −1 if a particle exits from 1 (at rate γ)

y = 0 if no particle exchange with the left reservoir has occurred
during dt.

These three mutually exclusive types of transitions lead to a three parts
decomposition of the Markov Matrix: M = M+ + M− + M0 .

The cumulant-generating function E (µ) when t →∞,
〈
eµYt

〉
' eE(µ)t ,

is the dominant eigenvalue of the deformed matrix

M(µ) = M0 + eµM+ + e−µM−

E (µ) could not be obtained by Bethe Ansatz for the open system:
We developed a Generalized Matrix Product Method.

K. Mallick Fluctuations of the Current in the Open Exclusion Process



Generalized Matrix Ansatz

We have proved that the dominant eigenvector of the deformed matrix
M(µ) is given by the following matrix product representation:

Fµ(C) =
1

Z
(k)
L

〈Wk |
L∏

i=1

(τiDk + (1− τi )Ek) |Vk〉+O
(
µk+1

)
The matrices Dk and Ek are the same as above

Dk+1 = (1⊗ 1 + d ⊗ e)⊗ Dk + (1⊗ d + d ⊗ 1)⊗ Ek

Ek+1 = (1⊗ 1 + e ⊗ d)⊗ Ek + (e ⊗ 1 + 1⊗ e)⊗ Dk

The boundary vectors 〈Wk | and |Vk〉 are constructed recursively:

|Vk〉 = |β〉|Ṽ 〉|Vk−1〉 and 〈Wk | = 〈W µ|〈W̃ µ|〈Wk−1|

[β(1− d)− δ(1− e)] |Ṽ 〉 = 0

〈W µ|[α(1 + eµ e)− γ(1 + e−µ d)] = (1− q)〈W µ|

〈W̃ µ|[α(1− eµ e)− γ(1− e−µ d)] = 0
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Structure of the solution I

For arbitrary values of q and (α, β, γ, δ), and for any system size L the
parametric representation of E (µ) is given by

µ = −
∞∑
k=1

Ck(q;α, β, γ, δ, L)
Bk

2k

E = −
∞∑
k=1

Dk(q;α, β, γ, δ, L)
Bk

2k

The coefficients Ck and Dk are given by contour integrals in the complex
plane:

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

that contains the full information about the statistics of the current.
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Structure of the solution II

This auxiliary function WB(z) solves a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

• The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K

(
z1

z2

)

with kernel K (z) = 2
∑∞

k=1
qk

1−qk

{
zk + z−k

}
• The function F (z) is given by

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =
∏∞

k=0(1− qkx) and a±, b± depend on the boundary rates.

• The complex contour C encircles 0, qka+, q
ka−, q

kb+, qkb− for k ≥ 0.
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Discussion

These results are of combinatorial nature: valid for arbitrary values
of the parameters and for any system sizes with no restrictions.

Average-Current:

J = lim
t→∞

〈Yt〉
t

= (1− q)
D1

C1
= (1− q)

∮
Γ

dz
2 i π

F (z)
z∮

Γ
dz

2 i π
F (z)

(z+1)2

(cf. T. Sasamoto, 1999.)

Diffusion Constant:

∆ = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
= (1− q)

D1C2 − D2C1

2C 3
1

where C2 and D2 are obtained using

φ1(z) =
F (z)

2
and φ2(z) =

F (z)

2

(
F (z)+

∮
Γ

dz2F (z2)K (z/z2)

2ıπz2

)
(TASEP case solved in B. Derrida, M. R. Evans, K. M., 1995)
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Asymptotic behaviour in the Phase Diagram

Maximal Current Phase:

µ = −L−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk

E − 1− q

4
µ = − (1− q)L−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk

Low Density (and High Density) Phases:
Dominant singularity at a+: φk(z) ∼ F k(z). By Lagrange Inversion:

E (µ) = (1− q)(1− ρa)
eµ − 1

eµ + (1− ρa)/ρa

(cf de Gier and Essler, 2011).
Current Large Deviation Function:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).

Matches the predictions of Macroscopic Fluctuation Theory in the
Weak Asymmetry Limit, as observed by T. Bodineau and B. Derrida.
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The TASEP case

Here q = γ = δ = 0 and (α, β) are arbitrary.
The parametric representation of E (µ) is

µ = −
∞∑
k=1

Ck(α, β)
Bk

2k

E = −
∞∑
k=1

Dk(α, β)
Bk

2k

with

Ck(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

z
and Dk(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

(1 + z)2

where

F (z) =
−(1 + z)2L(1− z2)2

zL(1− az)(z − a)(1− bz)(z − b)
, a =

1− α
α

, b =
1− β
β
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A special TASEP case

In the case α = β = 1, a parametric representation of the cumulant
generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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Numerical results (DMRG)

20 30 40 50 60 70 80
L

- 0.004

- 0.002

0.002

0.004

0.006

E3 , E4

20 40 60 80 100
L

- 0.03

- 0.02

- 0.01

0.01

0.02

0.03

0.04

E2 , E3

Left: Max. Current (q = 0.5, a+ = b+ = 0.65, a− = b− = 0.6), Third
and Fourth cumulant.

Right: High Density (q = 0.5, a+ = 0.28, b+ = 1.15, a− = −0.48 and
b− = −0.27), Second and Third cumulant.

A. Lazarescu and K. Mallick, J. Phys. A 44, 315001 (2011).

M. Gorissen, A. Lazarescu, K.M., C. Vanderzande, PRL 109 170601 (2012).
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Conclusion

Systems out of equilibrium are ubiquitous in nature. They break
time-reversal invariance.

Often, they are characterized by non-vanishing stationary currents.

Large deviation functions (LDF) appear as the right generalization of the
thermodynamic potentials: convex, optimized at the stationary state, and
non-analytic features can be interpreted as phase transitions.

The LDF’s are very likely to play a key-role in constructing a
non-equilibrium statistical mechanics.

Finding Large Deviation Functions is a very important current issue. This
can be achieved through experimental, mathematical or computational
techniques.

The results given here are one of very few exact analytically exact
formulae known for Large Deviation Functions.

These results were obtained in collaboration with A. Lazarescu and
S. Prolhac.
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