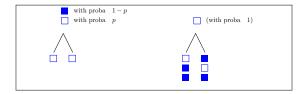
Percolation games, probabilistic cellular automata, and the hard-core model

Irène Marcovici, Institut Élie Cartan de Lorraine Nancy, France

Joint work with James B. Martin and Alexander E. Holroyd

Rencontres de Probabilités, Rouen, September 17, 2015

The probabilistic cellular automaton



▲ 伊 ▶ → 王

The probabilistic cellular automaton

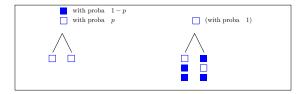
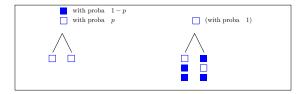


Image: A image: A

B> B

The probabilistic cellular automaton

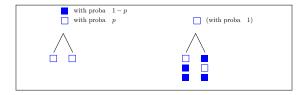


Irène Marcovici Sept. 17, 2015

э

Image: A image: A

The probabilistic cellular automaton

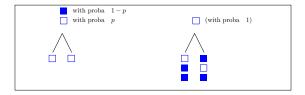


Irène Marcovici Sept. 17, 2015

- ◆ 同 → - ◆ 三

3) (3

The probabilistic cellular automaton

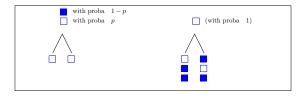


Irène Marcovici Sept. 17, 2015

э

Image: A = A

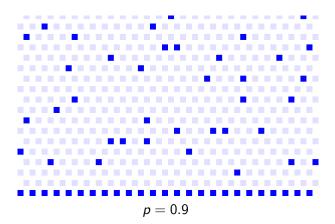
The probabilistic cellular automaton



Irène Marcovici Sept. 17, 2015

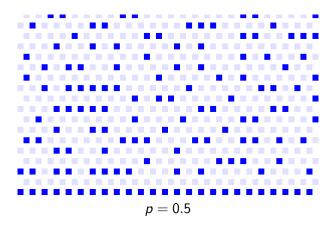
Image: A image: A

B> B



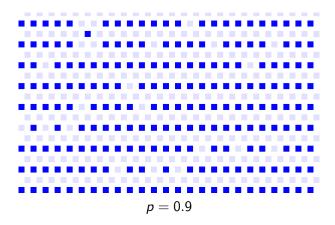
イロト イヨト イヨト イヨト

æ



・ロン ・部 と ・ ヨ と ・ ヨ と …

2



・ロン ・部 と ・ ヨ と ・ ヨ と …

2

Notion of ergodicity

If the system **forgets** its initial configuration, we say it is ergodic.

Notion of ergodicity

If the system **forgets** its initial configuration, we say it is ergodic.

Ergodicity

The PCA *F* on $\{0,1\}^{\mathbb{Z}}$ is ergodic if:

- it has a unique invariant measure $\pi \in \mathcal{M}(\{0,1\}^{\mathbb{Z}})$, such that $\pi F = \pi$,
- for any initial measure μ ∈ M({0,1}^ℤ), the sequence of iterates (μFⁿ)_{n≥0} converges weakly to π.

Notion of ergodicity

If the system **forgets** its initial configuration, we say it is ergodic.

Ergodicity

The PCA *F* on $\{0,1\}^{\mathbb{Z}}$ is ergodic if:

- it has a unique invariant measure $\pi \in \mathcal{M}(\{0,1\}^{\mathbb{Z}})$, such that $\pi F = \pi$,
- for any initial measure μ ∈ M({0,1}^ℤ), the sequence of iterates (μFⁿ)_{n≥0} converges weakly to π.

For which values of the parameter p is the PCA ergodic? How can we describe its invariant measure(s)?

Motivations

Irène Marcovici Sept. 17, 2015

æ

• A model very easy to define!

æ

≣ ।•

-∢∄⊁ ∢≣⊁

- A model very easy to define!
- Enumeration of directed animals in combinatorics

э

- A model very easy to define!
- Enumeration of directed animals in combinatorics
- Percolation game

- A model very easy to define!
- Enumeration of directed animals in combinatorics
- Percolation game
- Golden mean subshift in symbolic dynamics

- A model very easy to define!
- Enumeration of directed animals in combinatorics
- Percolation game
- Golden mean subshift in symbolic dynamics
- Hard-core model in statistical physics

Outline

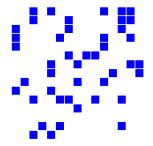
2 Study of the PCA

Irène Marcovici Sept. 17, 2015

@ ▶ ∢ ≣

æ

Grid $\mathbb{N} \times \mathbb{N}$, with each site colored in blue independently with probability p (here, p = 0.2).

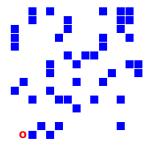


Grid $\mathbb{N} \times \mathbb{N}$, with each site colored in blue independently with probability p (here, p = 0.2).



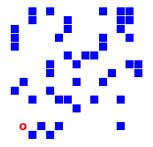
One token, that **two** players move alternatively, from position x to a white position among x + (0, 1) or x + (1, 0).

Grid $\mathbb{N} \times \mathbb{N}$, with each site colored in blue independently with probability p (here, p = 0.2).



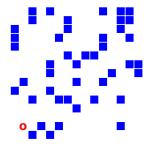
One token, that **two** players move alternatively, from position x to a white position among x + (0, 1) or x + (1, 0).

Grid $\mathbb{N} \times \mathbb{N}$, with each site colored in blue independently with probability p (here, p = 0.2).



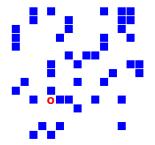
One token, that **two** players move alternatively, from position x to a white position among x + (0, 1) or x + (1, 0).

Grid $\mathbb{N} \times \mathbb{N}$, with each site colored in blue independently with probability p (here, p = 0.2).



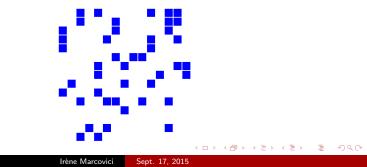
One token, that **two** players move alternatively, from position x to a white position among x + (0, 1) or x + (1, 0). If both sites x + (0, 1) and x + (1, 0) are blue, then the player whose turn it is to play loses the game.

Grid $\mathbb{N} \times \mathbb{N}$, with each site colored in blue independently with probability p (here, p = 0.2).



One token, that **two** players move alternatively, from position x to a white position among x + (0, 1) or x + (1, 0). If both sites x + (0, 1) and x + (1, 0) are blue, then the player whose turn it is to play loses the game.

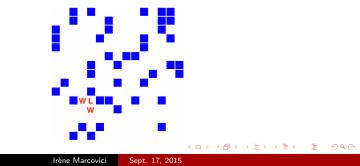
- A position is:
 - a win (**W**) if from this position, the player whose turn it is to play has a winning strategy,
 - a loss (L) if from this position, the other player has a winning strategy,
 - a draw (**D**) if neither player has a winning strategy, so that with "best play", the game will continue for ever.



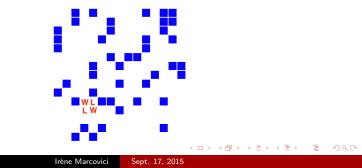
- A position is:
 - a win (**W**) if from this position, the player whose turn it is to play has a winning strategy,
 - a loss (L) if from this position, the other player has a winning strategy,
 - a draw (**D**) if neither player has a winning strategy, so that with "best play", the game will continue for ever.



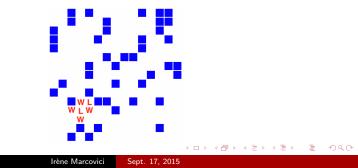
- A position is:
 - a win (**W**) if from this position, the player whose turn it is to play has a winning strategy,
 - a loss (L) if from this position, the other player has a winning strategy,
 - a draw (**D**) if neither player has a winning strategy, so that with "best play", the game will continue for ever.



- A position is:
 - a win (**W**) if from this position, the player whose turn it is to play has a winning strategy,
 - a loss (L) if from this position, the other player has a winning strategy,
 - a draw (**D**) if neither player has a winning strategy, so that with "best play", the game will continue for ever.



- A position is:
 - a win (**W**) if from this position, the player whose turn it is to play has a winning strategy,
 - a loss (L) if from this position, the other player has a winning strategy,
 - a draw (**D**) if neither player has a winning strategy, so that with "best play", the game will continue for ever.



For p large enough, there are no draws.

æ

'≣ ►

-∢∄⊁ ∢≣⊁

For p large enough, there are no draws.

The connected component of white sites is almost surely finite.

For p large enough, there are no draws.

The connected component of white sites is almost surely finite.

Questions

Are there values of p > 0 for which there are **D** with a positive probability?

For p large enough, there are no draws.

The connected component of white sites is almost surely finite.

Questions

Are there values of p > 0 for which there are **D** with a positive probability? What is the probability for the origin to be **W**, **L**, or **D**?

The cellular automaton

If we know the status (W, L, or D) of the sites on a NW-SE diagonal, then we know them on the next diagonal below.

If we know the status (W, L, or D) of the sites on a NW-SE diagonal, then we know them on the next diagonal below.

We introduce a **probabilistic cellular automaton** on the alphabet $\{\mathbf{W}, \mathbf{L}, \mathbf{D}, \blacksquare\}$, acting on diagonals along the direction \swarrow .

If we know the status (W, L, or D) of the sites on a NW-SE diagonal, then we know them on the next diagonal below.

We introduce a **probabilistic cellular automaton** on the alphabet $\{\mathbf{W}, \mathbf{L}, \mathbf{D}, \blacksquare\}$, acting on diagonals along the direction \swarrow .

We can in fact identify the symbols \blacksquare and \mathbf{W} .

If we know the status (W, L, or D) of the sites on a NW-SE diagonal, then we know them on the next diagonal below.

We introduce a **probabilistic cellular automaton** on the alphabet $\{\mathbf{W}, \mathbf{L}, \mathbf{D}, \blacksquare\}$, acting on diagonals along the direction \swarrow .

We can in fact identify the symbols \square and \mathbf{W} .

If there are no \mathbf{D} , the PCA we obtain is defined as follows.

- If there is at least one L along the two neighbours (North and East), the site becomes a W.
- Otherwise, it is a **L** with proba 1 p and a **W** with proba p.

If we know the status (W, L, or D) of the sites on a NW-SE diagonal, then we know them on the next diagonal below.

We introduce a **probabilistic cellular automaton** on the alphabet $\{\mathbf{W}, \mathbf{L}, \mathbf{D}, \blacksquare\}$, acting on diagonals along the direction \swarrow .

We can in fact identify the symbols \blacksquare and \mathbf{W} .

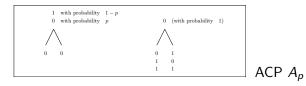
If there are no **D**, the PCA we obtain is defined as follows.

- If there is at least one L along the two neighbours (North and East), the site becomes a W.
- Otherwise, it is a **L** with proba 1 p and a **W** with proba p.

The **D** play the role of symbols "?".

Recoding

With the recoding ($\mathbf{L} = 1, \mathbf{W} = 0$), if we rotate the picture, we obtain the following PCA.



< 1 →

Recoding

With the recoding ($\mathbf{L} = 1, \mathbf{W} = 0$), if we rotate the picture, we obtain the following PCA.

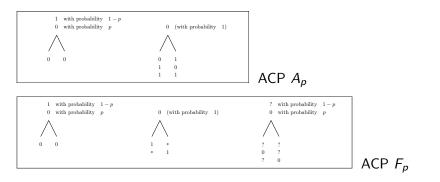


Image: A math a math

900

Link with the ergodicity

Proposition

 F_p ergodic $\iff A_p$ ergodic

æ

- 4 聞 と 4 臣 と 4 臣 と

Link with the ergodicity

Proposition

 F_p ergodic $\iff A_p$ ergodic

Envelope PCA (F_p) ergodic \implies PCA (A_p) ergodic.

Irène Marcovici Sept. 17, 2015

《曰》《聞》《臣》《臣》

3

Link with the ergodicity

Proposition

 F_p ergodic $\iff A_p$ ergodic

Envelope PCA (F_p) ergodic \implies PCA (A_p) ergodic.

Here, the converse statement is true because of the monotonicity property of F_p : $\mu \leq \nu \Rightarrow \nu F_p \leq \mu F_p$, where \leq is the order induced by $0 \leq ? \leq 1$.

< fi ► < E ►

Link with the ergodicity

Proposition

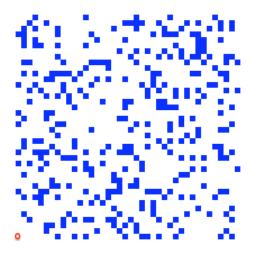
 F_p ergodic $\iff A_p$ ergodic \iff No draws

Envelope PCA (F_p) ergodic \implies PCA (A_p) ergodic.

Here, the converse statement is true because of the monotonicity property of F_p : $\mu \leq \nu \Rightarrow \nu F_p \leq \mu F_p$, where \leq is the order induced by $0 \leq ? \leq 1$.

< 行▶ < 三 ▶

Link with the ergodicity

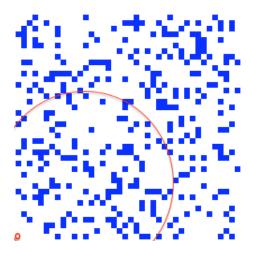


æ

э

▲ 同 ▶ → ● 三

Link with the ergodicity

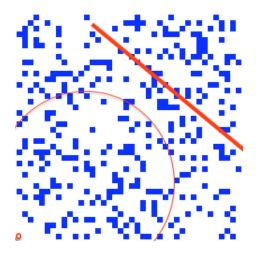


Irène Marcovici Sept. 17, 2015

э

▲ 同 ▶ → ● 三

Link with the ergodicity

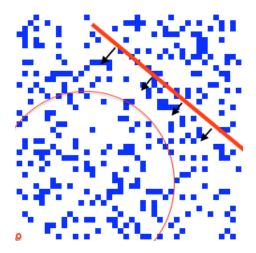


э

∃ >

▲ 同 ▶ → ● 三

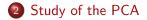
Link with the ergodicity



э

▲ 同 ▶ → 三 ▶

Outline



Irène Marcovici Sept. 17, 2015

@ ▶ ∢ ≣

One can show that for any value of p, the PCA has a Markovian invariant measure μ_p , given by the following transition matrix.

$$P = \begin{pmatrix} p_{0,0} & p_{0,1} \\ p_{1,0} & p_{1,1} \end{pmatrix} = \begin{pmatrix} \frac{2-p-\sqrt{p(4-3p)}}{2(1-p)^2} & \frac{2p^2-3p+\sqrt{p(4-3p)}}{2(1-p)^2} \\ \frac{-p+\sqrt{p(4-3p)}}{2(1-p)} & \frac{2-p-\sqrt{p(4-3p)}}{2(1-p)} \end{pmatrix}$$

One can show that for any value of p, the PCA has a Markovian invariant measure μ_p , given by the following transition matrix.

$$P = \begin{pmatrix} p_{0,0} & p_{0,1} \\ p_{1,0} & p_{1,1} \end{pmatrix} = \begin{pmatrix} \frac{2-p-\sqrt{p(4-3p)}}{2(1-p)^2} & \frac{2p^2-3p+\sqrt{p(4-3p)}}{2(1-p)^2} \\ \frac{-p+\sqrt{p(4-3p)}}{2(1-p)} & \frac{2-p-\sqrt{p(4-3p)}}{2(1-p)} \end{pmatrix}$$

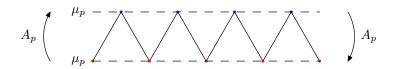
It is a reversible invariant measure.

One can show that for any value of p, the PCA has a Markovian invariant measure μ_p , given by the following transition matrix.

$$P = \begin{pmatrix} p_{0,0} & p_{0,1} \\ p_{1,0} & p_{1,1} \end{pmatrix} = \begin{pmatrix} \frac{2-p-\sqrt{p(4-3p)}}{2(1-p)^2} & \frac{2p^2-3p+\sqrt{p(4-3p)}}{2(1-p)^2} \\ \frac{-p+\sqrt{p(4-3p)}}{2(1-p)} & \frac{2-p-\sqrt{p(4-3p)}}{2(1-p)} \end{pmatrix}$$

It is a reversible invariant measure.

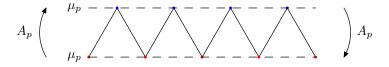
Markovian invariant measure



A ►

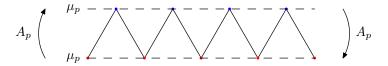
Reversible invariant measures of the PCA are Gibbs measures on the **doubling graph** (="accordion" graph) such that:

- there are no two consecutive 1's
- the probability to have a 1 if the two neighbours are in state 0 is equal to 1 − p.



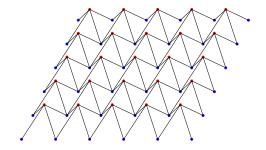
Reversible invariant measures of the PCA are Gibbs measures on the **doubling graph** (="accordion" graph) such that:

- there are no two consecutive 1's
- the probability to have a 1 if the two neighbours are in state 0 is equal to 1 − p.



If we unfold the accordion graph, we recover the Gibbs measures of the one-dimensional hardcore model!

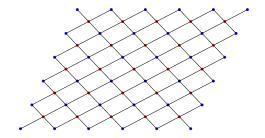
Dimension 2



Irène Marcovici Sept. 17, 2015

æ

Dimension 2

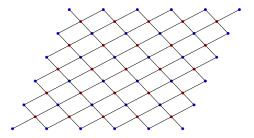


イロト イヨト イヨト イヨト

æ

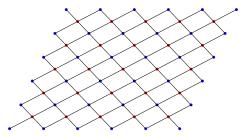
Dimension 2

In dimension 2, the PCA has also reversible invariant measures, given by the Gibss measures of the hard-core model.



Dimension 2

In dimension 2, the PCA has also reversible invariant measures, given by the Gibss measures of the hard-core model.

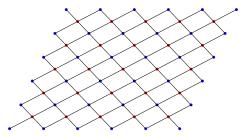


Proposition

For p small enough, there are draws for this game, played on a 3-dimensional lattice.

Dimension 2

In dimension 2, the PCA has also reversible invariant measures, given by the Gibss measures of the hard-core model.



Proposition

For p small enough, there are draws for this game, played on a 3-dimensional lattice.

Multiplicity of Gibbs measures.

Back to the 1-dimensional PCA

Situation

In dim. 1, uniqueness of the Gibbs measure, for any value of p.

Back to the 1-dimensional PCA

Situation

In dim. 1, uniqueness of the Gibbs measure, for any value of p. So, a single reversible invariant measure, having a Markovian form.

Back to the 1-dimensional PCA

Situation

In dim. 1, uniqueness of the Gibbs measure, for any value of p. So, a single reversible invariant measure, having a Markovian form.

Are there other (non-reversible) invariant measures?

Back to the 1-dimensional PCA

Situation

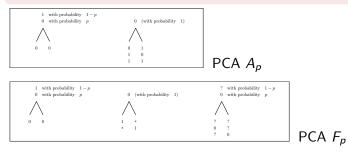
In dim. 1, uniqueness of the Gibbs measure, for any value of p. So, a single reversible invariant measure, having a Markovian form.

Are there other (non-reversible) invariant measures?

Theorem

For any $p \in (0, 1)$, the PCA A_p is ergodic and the probability of draws is 0 for the percolation game on \mathbb{N}^2 .

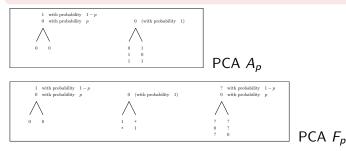
We show that for any p, the PCA A_p is ergodic.



《口》《聞》《臣》《臣》

э

We show that for any p, the PCA A_p is ergodic.



Step 1

It is enough to show that starting from the configuration with only "?", when iterating F_p , the density of "?" converges to 0 (coupling of all the trajectories for A_p).

(日) (同) (三) ()

Step 2

We show that F_p has no invariant measure for which there is a positive density of symbols "?".

Step 2

We show that F_p has no invariant measure for which there is a positive density of symbols "?".

Step 3

Let μ be an invariant measure of F_p . We introduce a weight on symbols "?" under μ , the weighting of each "?" depending on its neigbours. We show that this quantity decreases under F_p .

Weighting system

Right-weight of a symbol "?" =

- 3 if it is followed by a 0, then by a 1,
- 2 if it is followed by a 0, then by something else than a 1,
- 1 otherwise.

Weighting system

Right-weight of a symbol "?" =

- 3 if it is followed by a 0, then by a 1,
- 2 if it is followed by a 0, then by something else than a 1,
- 1 otherwise.
- Left-weight of a symbol "?" =
 - 3 if it is preceded by a 0, then a 1,
 - 2 if it is preceded by a 0, then something else than a 1,
 - 1 otherwise.

Total weight = left-weight + right-weight.

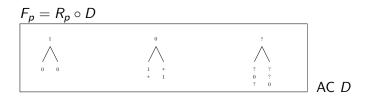
Weighting system

Right-weight of a symbol "?" =

- 3 if it is followed by a 0, then by a 1,
- 2 if it is followed by a 0, then by something else than a 1,
- 1 otherwise.
- Left-weight of a symbol "?" =
 - 3 if it is preceded by a 0, then a 1,
 - 2 if it is preceded by a 0, then something else than a 1,
 - 1 otherwise.

Total weight = left-weight + right-weight.

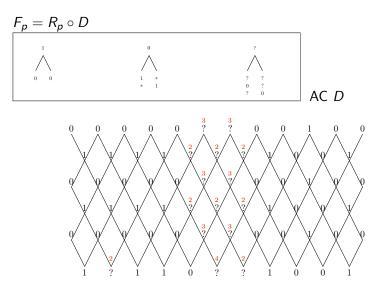
Example: in 10??10, the first "?" has a weight 3+1=4 and the second one a weight 1+1=2.



イロト イヨト イヨト イヨト

æ

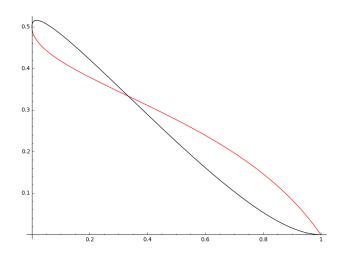
590



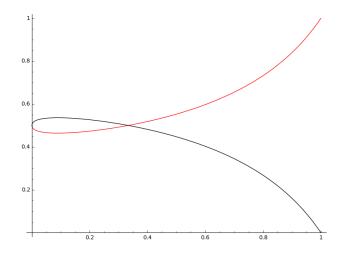
・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

590



Red: winning probability ; black: loss probability .



Red: winning probability ; black: loss probability .

• In dimension 2, are there other invariant measures than the Gibbs reversible invariant measures?

- In dimension 2, are there other invariant measures than the Gibbs reversible invariant measures?
- What can we say of the game in the non-oriented setting?

- In dimension 2, are there other invariant measures than the Gibbs reversible invariant measures?
- What can we say of the game in the non-oriented setting?

• More generally, how to know whether a PCA is ergodic or not?

- In dimension 2, are there other invariant measures than the Gibbs reversible invariant measures?
- What can we say of the game in the non-oriented setting?

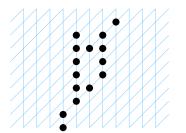
- More generally, how to know whether a PCA is ergodic or not?
- How can we describe its invariant measure(s)?

- In dimension 2, are there other invariant measures than the Gibbs reversible invariant measures?
- What can we say of the game in the non-oriented setting?

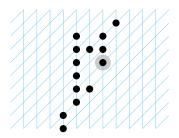
- More generally, how to know whether a PCA is ergodic or not?
- How can we describe its invariant measure(s)?
- In dimension 1, for **elementary PCA** (neighbourhood of size 2, binary states), is it true that if all the probability transitions are in (0, 1), then the PCA is ergodic?

Definition of directed animals

Directed animal of **base** C: finite subset of vertices of $\mathbb{Z} \times \mathbb{N}$, connected from $C \times \{0\}$ by links \uparrow or \nearrow



A directed animal (whose base has only one element)



Not a directed animal

Enumeration of directed animals

Counting series of directed animals of base C:

$$\mathcal{S}_{\mathcal{C}}(x) = \sum_{E: \mathsf{DA \ dof \ base \ } \mathcal{C}} x^{|\mathcal{E}|} = \sum_{n \geq 0} \mathsf{a}_n(\mathcal{C}) x^n,$$

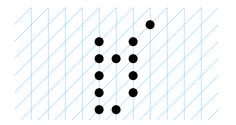
where $a_n(C) =$ number of directed animals of base C and size n.

Enumeration of directed animals

Counting series of directed animals of base C:

$$\mathcal{S}_{\mathcal{C}}(x) = \sum_{E: \mathsf{DA \ dof \ base \ } \mathcal{C}} x^{|\mathcal{E}|} = \sum_{n \geq 0} \mathsf{a}_n(\mathcal{C}) x^n,$$

where $a_n(C)$ = number of directed animals of base C and size n. Recurrence relation: $S_C(x) = x^{|C|} \left(\sum_{D \subset C + \{0,1\}} S_D(x) \right)$



Let μ be an invariant measure of the PCA of parameter p, and let $X, Y \sim \mu$.

_ _ ▶

Let μ be an invariant measure of the PCA of parameter p, and let $X, Y \sim \mu$. For a finite subset $C \subset \mathbb{Z}$, we have the following relation.

 $\mathbb{P}(\forall i \in C, Y_i = 1) =$

Let μ be an invariant measure of the PCA of parameter p, and let $X, Y \sim \mu$.

For a finite subset $C \subset \mathbb{Z}$, we have the following relation.

$$\mathbb{P}(\forall i \in C, Y_i = 1) = p^{|C|} \mathbb{P}(\forall i \in C + \{0, 1\}, X_i = 0)$$

Let μ be an invariant measure of the PCA of parameter p, and let $X, Y \sim \mu$.

For a finite subset $C \subset \mathbb{Z}$, we have the following relation.

$$\mathbb{P}(orall i \in \mathcal{C}, Y_i = 1) = p^{|\mathcal{C}|} \mathbb{P}(orall i \in \mathcal{C} + \{0, 1\}, X_i = 0)$$

$$= {oldsymbol{
ho}}^{|\mathcal{C}|} \Big(\sum_{D \subset \mathcal{C} + \{0,1\}} (-1)^{|D|} \ \mathbb{P}(orall i \in D, X_i = 1) \Big)$$

Let μ be an invariant measure of the PCA of parameter p, and let $X, Y \sim \mu$.

For a finite subset $C \subset \mathbb{Z}$, we have the following relation.

$$\mathbb{P}(\forall i \in C, Y_i = 1) = p^{|C|} \mathbb{P}(\forall i \in C + \{0, 1\}, X_i = 0)$$

$$= oldsymbol{
ho}^{|\mathcal{C}|} \Big(\sum_{D \subset \mathcal{C} + \{0,1\}} (-1)^{|D|} \ \mathbb{P}(orall i \in D, X_i = 1) \Big)$$

So, $S_C(-p) = (-1)^{|C|} \mathbb{P}(\forall i \in C, Y_i = 1)$ is one possible solution for the recurrence relation of directed animals of base C.

Let μ be an invariant measure of the PCA of parameter p, and let $X, Y \sim \mu$.

For a finite subset $C \subset \mathbb{Z}$, we have the following relation.

$$\mathbb{P}(\forall i \in C, Y_i = 1) = p^{|C|} \mathbb{P}(\forall i \in C + \{0, 1\}, X_i = 0)$$

$$= {oldsymbol{
ho}}^{|\mathcal{C}|} \Big(\sum_{D \subset \mathcal{C} + \{0,1\}} (-1)^{|D|} \ \mathbb{P}(orall i \in D, X_i = 1) \Big)$$

So, $S_C(-p) = (-1)^{|C|} \mathbb{P}(\forall i \in C, Y_i = 1)$ is one possible solution for the recurrence relation of directed animals of base *C*.

References: D. Dhar, M. Bousquet-Mélou, J.-F. Marckert, Y. Le Borgne, M. Albenque...