From the quantum Lie algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ to the $\operatorname{ASEP}(q, j)$

Gioia Carinci

joint work with: Cristian Giardinà (Modena), Frank Redig (Delft), Tomohiro Sasamoto (Tokyo)

Rouen, 18 September 2015

Outline

- Constructive approach to duality theory via Lie algebra
- $\mathfrak{s u}_{q}(2)$ algebra: construction of $\operatorname{ASEP}(q, j)$
- Properties of $\operatorname{ASEP}(q, j)$

1. Constructive approach

to duality theory

via Lie algebra

Stochastic Duality

$\left(\eta_{t}\right)_{t \geq 0}$ Markov process on Ω with generator L,
$\left(\xi_{t}\right)_{t \geq 0}$ Markov process on $\Omega_{d u a l}$ with generator $L_{\text {dual }}$
ξ_{t} is dual to η_{t} with duality function $D: \Omega \times \Omega_{\text {dual }} \rightarrow \mathbb{R}$ if $\forall t \geq 0$

$$
\mathbb{E}_{\eta}\left(D\left(\eta_{t}, \xi\right)\right)=\mathbb{E}_{\xi}\left(D\left(\eta, \xi_{t}\right)\right) \quad \forall(\eta, \xi) \in \Omega \times \Omega_{\text {dual }}
$$

η_{t} is self-dual if $L_{\text {dual }}=L$.

Duality is equivalent to

$$
L D(\cdot, \xi)(\eta)=L_{\text {dual }} D(\eta, \cdot)(\xi)
$$

- Self-duality: $\left(L=L_{\text {dual }}\right)$ for a Markov chain with countable state space it is equivalent to

$$
\mathbf{L D}=\mathbf{D L}^{\top}
$$

- Self-duality: $\left(L=L_{\text {dual }}\right)$ for a Markov chain with countable state space it is equivalent to

$$
\mathbf{L D}=\mathbf{D L}^{T}
$$

- Reversibility and trivial self-duality: if μ is a reversible measure, a trivial (i.e. diagonal) self-duality function is

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu(\eta)} \delta_{\eta, \xi}
$$

- Self-duality: $\left(L=L_{\text {dual }}\right)$ for a Markov chain with countable state space it is equivalent to

$$
\mathbf{L D}=\mathbf{D L}^{T}
$$

- Reversibility and trivial self-duality: if μ is a reversible measure, a trivial (i.e. diagonal) self-duality function is

$$
\mathbf{d}(\eta, \xi)=\frac{1}{\mu(\eta)} \delta_{\eta, \xi}
$$

- Symmetries and (non-trivial) self-duality:

S: symmetry of the Markov generator, i.e. $[\mathbf{L}, \mathbf{S}]=0$
d: trivial self-duality function
$\longrightarrow \quad \mathbf{D}=\mathbf{S d}$ is a self-duality function

Lie algebra

A Lie algebra is a vector space \mathfrak{g} over a field F with a binary operation $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ (Lie bracket)

- $[\cdot, \cdot]$ is bilinear
- $\forall u, v$ in $\mathfrak{g}:[u, v]=-[v, u]$
- [Jacobi identity]: $\forall u, v, w$ in \mathfrak{g}

$$
[u,[v, w]]+[w,[u, v]]+[v,[w, u]]=0
$$

Algebraic approach

1. Write the Markov generator in abstract form, i.e. as an element of a Lie algebra, using the algebra generators.
2. Duality is related to a change of representation. Duality functions are the intertwiners.
3. Self-duality is associated to symmetries.

Conversely, the approach can be turned into a constructive method.

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.
iii) (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ making the algebra a bialgebra and conserving the commutation relations.

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.
iii) (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ making the algebra a bialgebra and conserving the commutation relations.
iv) (Quantum Hamiltonian): Compute $H=\Delta(C)$.

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.
iii) (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ making the algebra a bialgebra and conserving the commutation relations.
iv) (Quantum Hamiltonian): Compute $H=\Delta(C)$.
v) (Symmetries): $S=\Delta(X)$ with $X \in \mathfrak{g}$ is a symmetry of H :

$$
[H, S]=[\Delta(C), \Delta(X)]=\Delta([C, X])=\Delta(0)=0
$$

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.
iii) (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ making the algebra a bialgebra and conserving the commutation relations.
iv) (Quantum Hamiltonian): Compute $H=\Delta(C)$.
v) (Symmetries): $S=\Delta(X)$ with $X \in \mathfrak{g}$ is a symmetry of H :

$$
[H, S]=[\Delta(C), \Delta(X)]=\Delta([C, X])=\Delta(0)=0
$$

$H=\Delta(C)$ is not necessarly a stochastic generator!

Construction of Markov generators with algebraic structure

i) (Lie Algebra): Start from a Lie algebra \mathfrak{g}.
ii) (Casimir): Pick an element in the center of \mathfrak{g}, e.g. the Casimir C.
iii) (Co-product): Consider a co-product $\Delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ making the algebra a bialgebra and conserving the commutation relations.
iv) (Quantum Hamiltonian): Compute $H=\Delta(C)$.
v) (Symmetries): $S=\Delta(X)$ with $X \in \mathfrak{g}$ is a symmetry of H :

$$
[H, S]=[\Delta(C), \Delta(X)]=\Delta([C, X])=\Delta(0)=0
$$

$H=\Delta(C)$ is not necessarly a stochastic generator!
vi) (Markov generator): Apply a "ground state transformation" to turn H into a Markov generator L.

2. $\mathfrak{s u}_{q}(2)$ algebra:

construction of $\operatorname{ASEP}(q, j)$

q-numbers

For $q \in(0,1)$ and $n \in \mathbb{N}_{0}$ introduce the q-number

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

Remark: $\lim _{q \rightarrow 1}[n]_{q}=n$.

The first q-number's are:
$[0]_{q}=0$,
$[1]_{q}=1$,
$[2]_{q}=q+q^{-1}$,
$[3]_{q}=q^{2}+1+q^{-2}, \quad \cdots$

The quantum Lie algebra $\mathfrak{s u}_{q}(2) \equiv U_{q}\left(\mathfrak{s l}_{2}\right)$

For $q \in(0,1)$ consider the algebra with generators J^{+}, J^{-}, J^{0}

$$
\left[J^{+}, J^{-}\right]=\left[2 J^{0}\right]_{q}, \quad\left[J^{0}, J^{ \pm}\right]= \pm J^{ \pm}
$$

The quantum Lie algebra $\mathfrak{s u}_{q}(2) \equiv U_{q}\left(\mathfrak{s l}_{2}\right)$

For $q \in(0,1)$ consider the algebra with generators J^{+}, J^{-}, J^{0}

$$
\left[J^{+}, J^{-}\right]=\left[2 J^{0}\right]_{q}, \quad\left[J^{0}, J^{ \pm}\right]= \pm J^{ \pm}
$$

The Casimir element:

$$
C=J^{-} J^{+}+\left[J^{0}\right]_{q}\left[J^{0}+1\right]_{q}
$$

commutes with all the elements of the algebra, $\left[C, J^{ \pm}\right]=\left[C, J^{0}\right]=0$

The quantum Lie algebra $\mathfrak{s u}_{q}(2) \equiv U_{q}\left(\mathfrak{s l}_{2}\right)$

For $q \in(0,1)$ consider the algebra with generators J^{+}, J^{-}, J^{0}

$$
\left[J^{+}, J^{-}\right]=\left[2 J^{0}\right]_{q}, \quad\left[J^{0}, J^{ \pm}\right]= \pm J^{ \pm}
$$

The Casimir element:

$$
C=J^{-} J^{+}+\left[J^{0}\right]_{q}\left[J^{0}+1\right]_{q}
$$

commutes with all the elements of the algebra, $\left[C, J^{ \pm}\right]=\left[C, J^{0}\right]=0$
A standard representation ($n=0,1, \ldots 2 j$)

$$
\left\{\begin{aligned}
J^{+}|n\rangle & =\sqrt{[2 j-n]_{q}[n+1]_{q}}|n+1\rangle \\
J^{-}|n\rangle & =\sqrt{[n]_{q}[2 j-n+1]_{q}}|n-1\rangle \\
J^{0}|n\rangle & =(n-j)|n\rangle
\end{aligned}\right.
$$

In this representation $C|n\rangle=[j]_{q}[j+1]_{q}|n\rangle$

Co-product

A coproduct on an algebra $\mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ is an algebra homomorphism:

$$
\Delta([A, B])=[\Delta(A), \Delta(B)] \quad \forall A, B \in \mathfrak{g}
$$

Co-product

A coproduct on an algebra $\mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ is an algebra homomorphism:

$$
\Delta([A, B])=[\Delta(A), \Delta(B)] \quad \forall A, B \in \mathfrak{g}
$$

Define the co-product $\Delta: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right)^{\otimes 2}$ as follows

$$
\begin{aligned}
\Delta\left(J^{ \pm}\right) & =J^{ \pm} \otimes q^{-J^{0}}+q^{J^{0}} \otimes J^{ \pm} \\
\Delta\left(J^{0}\right) & =J^{0} \otimes 1+1 \otimes J^{0}
\end{aligned}
$$

then

$$
\left[\Delta\left(J^{+}\right), \Delta\left(J^{-}\right)\right]=\left[2 \Delta\left(J^{0}\right)\right]_{q} \quad\left[\Delta\left(J^{0}\right), \Delta\left(J^{ \pm}\right)\right]= \pm \Delta\left(J^{ \pm}\right)
$$

Quantum Hamiltonian

$$
\begin{gathered}
\Delta\left(C_{i}\right)=-q^{J_{i}^{0}}\left\{J_{i}^{+} \otimes J_{i+1}^{-}+J_{i}^{-} \otimes J_{i+1}^{+}+B_{i, i+1}\right\} q^{-J_{i+1}^{0}} \\
B_{i, i+1}=\frac{\left(q^{j}+q^{-j}\right)\left(q^{j+1}+q^{-(j+1)}\right)}{2\left(q-q^{-1}\right)^{2}}\left(q^{J_{i}^{0}}-q^{-J_{i}^{0}}\right) \otimes\left(q^{J_{i+1}^{0}}-q^{-J_{i+1}^{0}}\right) \\
+\frac{\left(q^{j}-q^{-j}\right)\left(q^{j+1}-q^{-(j+1)}\right)}{2\left(q-q^{-1}\right)^{2}}\left(q^{J_{i}^{0}}+q^{-J_{i}^{0}}\right) \otimes\left(q^{J_{i+1}^{0}}+q^{-J_{i+1}^{0}}\right) \\
H_{(L)}:=\sum_{i=1}^{L-1}\left(1^{\otimes(i-1)} \otimes \Delta\left(C_{i}\right) \otimes 1^{\otimes(L-i-1)}+c_{q, j} 1^{\otimes L}\right) \\
c_{q, j}=\frac{\left(q^{2 j}-q^{-2 j}\right)\left(q^{2 j+1}-q^{-(2 j+1)}\right)}{\left(q-q^{-1}\right)^{2}} \quad \text { s.t. } H\left(\otimes_{i=1}^{L}|0\rangle\right)=0
\end{gathered}
$$

Symmetries of H

Iterate the co-product $\Delta^{n}: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right)^{\otimes(n+1)}$, i.e. for $n \geq 2$

$$
\begin{aligned}
\Delta^{n}\left(J^{ \pm}\right) & =\Delta^{n-1}\left(J^{ \pm}\right) \otimes q^{-J^{0}}+q^{\Delta^{n-1}\left(J^{0}\right)} \otimes J^{ \pm} \\
\Delta^{n}\left(J^{0}\right) & =\Delta^{n-1}\left(J^{0}\right) \otimes 1+1^{\otimes n} \otimes J^{0}
\end{aligned}
$$

Symmetries of H

Iterate the co-product $\Delta^{n}: U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right)^{\otimes(n+1)}$, i.e. for $n \geq 2$

$$
\begin{aligned}
\Delta^{n}\left(J^{ \pm}\right) & =\Delta^{n-1}\left(J^{ \pm}\right) \otimes q^{-J^{0}}+q^{\Delta^{n-1}\left(J^{0}\right)} \otimes J^{ \pm} \\
\Delta^{n}\left(J^{0}\right) & =\Delta^{n-1}\left(J^{0}\right) \otimes 1+1^{\otimes n} \otimes J^{0}
\end{aligned}
$$

Lemma
$\begin{aligned} \mathcal{J}^{ \pm} & :=\Delta^{L-1}\left(J^{ \pm}\right)=\sum_{i=1}^{L} q^{J_{1}^{0}} \otimes \cdots \otimes q^{J_{i-1}^{0}} \otimes J_{i}^{ \pm} \otimes q^{-J_{i+1}^{0}} \otimes \ldots \otimes q^{-J_{L}^{0}} \\ \mathcal{J}^{0} & :=\Delta^{L-1}\left(J^{0}\right)=\sum_{i=1}^{L} \underbrace{1 \otimes \cdots \otimes 1}_{(i-1) \text { times }} \otimes J_{i}^{0} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{(L-i) \text { times }} .\end{aligned}$
are symmetries of $H_{(L)}$.

We have constructed a $U_{q}\left(\mathfrak{s l}_{2}\right)$-symmetric linear operator H but it is not a stochastic generator!

We have constructed a $U_{q}\left(\mathfrak{s l}_{2}\right)$-symmetric linear operator H but it is not a stochastic generator!

Strategy

We have constructed a $U_{q}\left(\mathfrak{s l}_{2}\right)$-symmetric linear operator H but it is not a stochastic generator!

Strategy

- construct a non-trivial symmetry of H from the trivial ones: $\mathcal{J}^{ \pm, 0}$

We have constructed a $U_{q}\left(\mathfrak{s l}_{2}\right)$-symmetric linear operator H but it is not a stochastic generator!

Strategy

- construct a non-trivial symmetry of H from the trivial ones: $\mathcal{J}^{ \pm, 0}$
- transform H into a stochastic generator L via a transformation

$$
L=G^{-1} H G
$$

We have constructed a $U_{q}\left(\mathfrak{s l}_{2}\right)$-symmetric linear operator H but it is not a stochastic generator!

Strategy

- construct a non-trivial symmetry of H from the trivial ones: $\mathcal{J}^{ \pm, 0}$
- transform H into a stochastic generator L via a transformation

$$
L=G^{-1} H G
$$

- construct a non-trivial symmetry of L using the fact that if S is a symmetry of H then $G^{-1} S G$ is a symmetry of L

We have constructed a $U_{q}\left(\mathfrak{s l}_{2}\right)$-symmetric linear operator H but it is not a stochastic generator!

Strategy

- construct a non-trivial symmetry of H from the trivial ones: $\mathcal{J}^{ \pm, 0}$
- transform H into a stochastic generator L via a transformation

$$
L=G^{-1} H G
$$

- construct a non-trivial symmetry of L using the fact that if S is a symmetry of H then $G^{-1} S G$ is a symmetry of L
- use the non-trivial symmetries of L to construct self duality functions for the associated Markov process

Ground State transformation

Lemma

Let H be a matrix with $H\left(\eta, \eta^{\prime}\right) \geq 0$ for $\eta \neq \eta^{\prime}$. Suppose g is a positive ground state. i.e. $H g=0$ and $g(\eta)>0$. Let G be the matrix $G\left(\eta, \eta^{\prime}\right)=g(\eta) \delta\left(\eta, \eta^{\prime}\right)$. Then

$$
L=G^{-1} H G
$$

is a Markov generator.

Proof.

$$
L\left(\eta, \eta^{\prime}\right)=\frac{H\left(\eta, \eta^{\prime}\right) g\left(\eta^{\prime}\right)}{g(\eta)}
$$

Therefore

$$
L\left(\eta, \eta^{\prime}\right) \geq 0 \quad \text { if } \quad \eta \neq \eta^{\prime} \quad \sum_{\eta^{\prime}} L\left(\eta, \eta^{\prime}\right)=0
$$

Exponential symmetries

- $g^{(0)}=\otimes_{i=1}^{L}|0\rangle$ is a ground state, i.e. $H g^{(0)}=0$.
- For every symmetry $[H, S]=0$ another ground state is $g=S g^{(0)}$.
- The exponential symmetry

$$
S^{+}=\exp _{q^{2}}(E)=\sum_{n \geq 0} \frac{(E)^{n}}{[n]_{q}!} q^{-n(n-1) / 2}
$$

where

$$
E=\Delta^{(L-1)}\left(q^{J^{0}} J^{+}\right)
$$

gives a positive ground state

$$
g=S^{+} g^{(0)}=\sum_{\ell_{1}, \ldots, \ell_{L}} \otimes_{i=1}^{L}\left(\sqrt{\binom{2 j}{\ell_{i}}_{q}} \cdot q^{\ell_{i}(1+j-2 j i)}\right)\left|\ell_{i}\right\rangle
$$

ASEP(q,j) process

Definition

The Markov process $\operatorname{ASEP}(q, j)$ on $[1, L] \cap \mathbb{Z}$, denoted by $(\eta(t))_{t \geq 0}$, with state space $\{0,1, \ldots, 2 j\}^{L}$ is defined by

$$
\left(L^{\operatorname{ASEP}(q, j)} f\right)(\eta)=\sum_{i=1}^{L-1}\left(L_{i, i+1} f\right)(\eta)
$$

with

$$
\begin{aligned}
\left(L_{i, i+1} f\right)(\eta) & =q^{\eta_{i}-\eta_{i+1}-(2 j+1)}\left[\eta_{i}\right]_{q}\left[2 j-\eta_{i+1}\right]_{q}\left(f\left(\eta^{i, i+1}\right)-f(\eta)\right) \\
& +q^{\eta_{i}-\eta_{i+1}+(2 j+1)}\left[2 j-\eta_{i}\right]_{q}\left[\eta_{i+1}\right]_{q}\left(f\left(\eta^{i+1, i}\right)-f(\eta)\right)
\end{aligned}
$$

Remark: it follows from $L=G^{-1} H$.

ASEP(q,j) process: special cases

$$
\begin{aligned}
\left(L_{i, i+1} f\right)(\eta) & =q^{\eta_{i}-\eta_{i+1}-(2 j+1)}\left[\eta_{i}\right]_{q}\left[2 j-\eta_{i+1}\right]_{q}\left(f\left(\eta^{i, i+1}\right)-f(\eta)\right) \\
& +q^{\eta_{i}-\eta_{i+1}+(2 j+1)}\left[2 j-\eta_{i}\right]_{q}\left[\eta_{i+1}\right]_{q}\left(f\left(\eta^{i+1, i}\right)-f(\eta)\right)
\end{aligned}
$$

- $q=1 \rightarrow \operatorname{SEP}(j)$: symmetric partial exclusion jump right at rate $\eta_{i}\left(2 j-\eta_{i+1}\right)$, jump left at rate $\left(2 j-\eta_{i}\right) \eta_{i+1}$
- $j=1 / 2 \rightarrow \operatorname{ASEP}(q)$: asymmetric exclusion jump right at rate q^{-1}, jump left at rate q
- $j=\infty \rightarrow \operatorname{TAZRP}(q)$: totally asymmetric zero range after rescaling time $t \rightarrow q^{4 j-1} t$, jump right at rate $\frac{1-q^{2 n_{i}}}{1-q^{2}}$

3. Properties of $\operatorname{ASEP}(q, j)$

Properties of ASEP (q,j)

Theorem
a) The $\operatorname{ASEP}(q, j)$ is well-defined on \mathbb{Z} and is a monotone process.
b) The $\operatorname{ASEP}(q, j)$ on \mathbb{Z} has a family (labeled by $\alpha>0$) of reversible product measures with marginals

$$
\mathbb{P}_{\alpha}\left(\eta_{i}=x\right)=\frac{\alpha^{x}}{Z_{i, \alpha}}\binom{2 j}{x}_{q} \cdot q^{2 x(1+j-2 j i)}
$$

c) The $\operatorname{ASEP}(q, j)$ has translation invariant stationary product measures only for $j=1 / 2$ and for $j \rightarrow \infty$.

Proof of b) for $\alpha=1$: using $H=H^{T}$

$$
G^{2} L=\left(G^{2} G^{-1} H G\right)=\left(G H G^{-1}\right) G^{2}=L^{T} G^{2}
$$

Self-duality of $\operatorname{ASEP}(q, j)$

Theorem
The $\operatorname{ASEP}(q, j)$ on \mathbb{Z} is self-dual on
$D(\eta, \xi)=\prod_{i=1}^{L} \frac{\left[\eta_{i}\right]_{q}!}{\left[\eta_{i}-\xi_{i}\right]_{q}!} \frac{\Gamma_{q}\left(2 j+1-\xi_{i}\right)}{\Gamma_{q}(2 j+1)} \cdot q^{\left(\eta_{i}-\xi_{i}\right)\left[2 \sum_{k=1}^{i-1} \xi_{k}+\xi_{i}\right]+4 j \xi_{i}} \cdot 1_{\eta_{i} \geq \xi_{i}}$

Proof: it follows from the general method

- $d=G^{-2}$ is a trivial duality function
- $\left[H, S^{+}\right]$and $L=G^{-1} H G$, thus $\left[L, G^{-1} S^{+} G\right]=0$.
- $D=\left(G^{-1} S^{+} G\right) G^{-2}=G^{-1} S^{+} G^{-1}$ is a duality fct.

Current of $\operatorname{ASEP}(q, j)$

Definition
Let

$$
N_{i}(t):=\sum_{k \geq i} \eta_{k}(t)
$$

The current $J_{i}(t)$ during the time interval $[0, t]$ across the bond $(i-1, i)$ is defined as the net number of particles traversing the bond in the right direction:

$$
J_{i}(t)=N_{i}(t)-N_{i}(0)
$$

Remark: let $\xi^{(i)}$ be the configuration with 1 dual particle:

$$
\xi_{m}^{(i)}= \begin{cases}1 & \text { if } m=i \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
D\left(\eta, \xi^{(i)}\right)=\frac{q^{4 j i-1}}{q^{2 j}-q^{-2 j}} \cdot\left(q^{2 N_{i}}-q^{2 N_{i+1}}\right)
$$

First q^{2}-moment of the current

Theorem

$$
\begin{aligned}
\mathbb{E}_{\eta}[& \left.q^{2 J_{i}(t)}\right]=q^{\sum_{k<i} \eta_{k}} \\
& \quad-\sum_{k<i} q^{-4 j k} \mathbb{E}\left[q^{4 j X(t)}\left(1-q^{-2 \eta_{X(t)}}\right) q^{2\left(N_{X(t)}(0)-N_{i}(0)\right)} \mid X(0)=k\right]
\end{aligned}
$$

with $X(t)$ a random walker on \mathbb{Z} jumping left at rate $q^{2 j}[2 j]_{q}$ and jumping right at rate $q^{-2 j}[2 j]_{q}$

$$
\mathbb{P}(X(t)=z \mid X(0)=k)=e^{-[4 j]_{q} t} q^{-2 j(z-k)} I_{z-i}\left(2[2 j]_{q} t\right)
$$

$I_{n}(t)$ modified Bessel fct.

First q^{2}-moment of the current

Proof: Duaility gives

$$
\begin{gathered}
\mathbb{E}_{\eta}\left(D\left(\eta(t), \xi^{(i)}\right)\right)=\mathbb{E}_{\xi^{(i)}}\left(D\left(\eta, \xi^{(X(t))}\right)\right. \\
\mathbb{E}_{\eta}\left[q^{4 j i} \cdot\left(q^{2 N_{i}(t)}-q^{2 N_{i+1}(t)}\right)\right]=\mathbb{E}_{\xi^{(i)}}\left[q^{4 j X(t)} \cdot\left(q^{2 N_{X(t)}}-q^{2 N_{X(t)+1}}\right)\right]
\end{gathered}
$$

Therefore

$$
\mathbb{E}_{\eta}\left[q^{2 N_{i}(t)}\right]=\mathbb{E}_{\eta}\left[q^{2 N_{i+1}(t)}\right]+q^{-4 j i} \mathbb{E}_{\xi^{(i)}}\left[q^{4 j X(t)} \cdot\left(q^{2 N_{X(t)}}-q^{2 N_{X(t)+1}}\right)\right]
$$

Multiply by $q^{-2 N_{i}(0)}$ to get a recursion relation for the current and iterate.

Step initial condition

Proposition

For the step initial conditions $\eta^{ \pm} \in\{0, \ldots, 2 j\}^{\mathbb{Z}}$ defined as

$$
\eta_{i}^{+}:=\left\{\begin{array}{ll}
0 & \text { for } i<0 \\
2 j & \text { for } i \geq 0
\end{array} \quad \eta_{i}^{-}:=\left\{\begin{array}{cc}
2 j & \text { for } i<0 \\
0 & \text { for } i \geq 0
\end{array}\right.\right.
$$

one has

$$
\begin{aligned}
\mathbb{E}_{\eta^{+}}\left[q^{2 J_{i}(t)}\right]=q^{4 j \max \{0, i\}}\left\{1+q^{-4 j i} \mathbf{E}_{i}\left[\left(1-q^{4 j X(t)}\right) \mathbf{1}_{X(t) \geq 1}\right]\right\} \\
\mathbb{E}_{\eta^{-}}\left[q^{2 J_{i}(t)}\right]=q^{-4 j \max \{0, i\}}\left\{1-\mathbf{E}_{i}\left[\left(1-q^{4 j X(t)}\right) \mathbf{1}_{X(t) \geq 1}\right]\right\}
\end{aligned}
$$

Step initial condition

Remark 1: asymptotics

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \mathbb{E}_{\eta^{+}}\left[q^{2 J_{i}(t)}\right]=q^{4 j \max \{0, i\}}\left(1+q^{-4 j i}\right) \quad \text { shock } \\
& \lim _{t \rightarrow \infty} \mathbb{E}_{\eta^{-}}\left[q^{2 J_{i}(t)}\right]=0 \quad \text { rarefaction fan }
\end{aligned}
$$

Remark 2: contour integral

$$
\mathbb{E}_{\eta^{+}}\left[q^{2 J_{k}(t)}\right]=\frac{q^{4 j \max \{0, k\}}}{2 \pi i} \int e^{-\frac{q^{2} j[2]^{3}\left(q^{-1}-q\right)^{2} z}{\left(1+q^{4} z\right)(1+z)} t}\left(\frac{1+z}{1+q^{4 j} z}\right)^{k} \frac{d z}{z}
$$

where the integration contour includes 0 and $-q^{-4 j}$ but does not include -1 .

