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1. Constructive approach

to duality theory

via Lie algebra



Stochastic Duality

(ηt )t≥0 Markov process on Ω with generator L,

(ξt )t≥0 Markov process on Ωdual with generator Ldual

ξt is dual to ηt with duality function D : Ω× Ωdual → R if ∀t ≥ 0

Eη(D(ηt , ξ)) = Eξ(D(η, ξt )) ∀(η, ξ) ∈ Ω× Ωdual

ηt is self-dual if Ldual = L.

Duality is equivalent to LD(·, ξ)(η) = LdualD(η, ·)(ξ)



I Self-duality: (L = Ldual) for a Markov chain with countable
state space it is equivalent to

LD = DLT

I Reversibility and trivial self-duality: if µ is a reversible
measure, a trivial (i.e. diagonal) self-duality function is

d(η, ξ) =
1

µ(η)
δη,ξ

I Symmetries and (non-trivial) self-duality:

S: symmetry of the Markov generator, i.e. [L,S] = 0

d: trivial self-duality function

−→ D = Sd is a self-duality function
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Lie algebra

A Lie algebra is a vector space g over a field F with a binary
operation [·, ·] : g× g→ g (Lie bracket)

I [·, ·] is bilinear

I ∀ u, v in g: [u, v ] = −[v ,u]

I [Jacobi identity]: ∀ u, v ,w in g

[u, [v ,w ]] + [w , [u, v ]] + [v , [w ,u]] = 0



Algebraic approach

1. Write the Markov generator in abstract form, i.e. as an element
of a Lie algebra, using the algebra generators.

2. Duality is related to a change of representation.
Duality functions are the intertwiners.

3. Self-duality is associated to symmetries.

Conversely, the approach can be turned into a constructive method.



Construction of Markov generators
with algebraic structure

i) (Lie Algebra): Start from a Lie algebra g.

ii) (Casimir): Pick an element in the center of g, e.g. the Casimir C.

iii) (Co-product): Consider a co-product ∆ : g→ g⊗ g making the
algebra a bialgebra and conserving the commutation relations.

iv) (Quantum Hamiltonian): Compute H = ∆(C).

v) (Symmetries): S = ∆(X ) with X ∈ g is a symmetry of H:

[H,S] = [∆(C),∆(X )] = ∆([C,X ]) = ∆(0) = 0.

H = ∆(C) is not necessarly a stochastic generator!

vi) (Markov generator): Apply a “ground state transformation” to turn
H into a Markov generator L.
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2. suq(2) algebra:

construction of ASEP(q, j)



q-numbers

For q ∈ (0,1) and n ∈ N0 introduce the q-number

[n]q =
qn − q−n

q − q−1

Remark: limq→1[n]q = n.

The first q-number’s are:

[0]q = 0, [1]q = 1, [2]q = q+q−1, [3]q = q2+1+q−2, . . .



The quantum Lie algebra suq(2) ≡ Uq(sl2)

For q ∈ (0,1) consider the algebra with generators J+, J−, J0

[J+, J−] = [2J0]q, [J0, J±] = ±J±

The Casimir element:

C = J−J+ + [J0]q[J0 + 1]q

commutes with all the elements of the algebra, [C, J±] = [C, J0] = 0

A standard representation (n = 0,1, . . .2j)
J+ |n〉 =

√
[2j − n]q[n + 1]q |n + 1〉

J− |n〉 =
√

[n]q[2j − n + 1]q |n − 1〉
J0 |n〉 = (n − j) |n〉

In this representation C |n〉 = [j]q[j + 1]q |n〉



The quantum Lie algebra suq(2) ≡ Uq(sl2)

For q ∈ (0,1) consider the algebra with generators J+, J−, J0

[J+, J−] = [2J0]q, [J0, J±] = ±J±

The Casimir element:

C = J−J+ + [J0]q[J0 + 1]q

commutes with all the elements of the algebra, [C, J±] = [C, J0] = 0

A standard representation (n = 0,1, . . .2j)
J+ |n〉 =

√
[2j − n]q[n + 1]q |n + 1〉

J− |n〉 =
√

[n]q[2j − n + 1]q |n − 1〉
J0 |n〉 = (n − j) |n〉

In this representation C |n〉 = [j]q[j + 1]q |n〉



The quantum Lie algebra suq(2) ≡ Uq(sl2)

For q ∈ (0,1) consider the algebra with generators J+, J−, J0

[J+, J−] = [2J0]q, [J0, J±] = ±J±

The Casimir element:

C = J−J+ + [J0]q[J0 + 1]q

commutes with all the elements of the algebra, [C, J±] = [C, J0] = 0

A standard representation (n = 0,1, . . .2j)
J+ |n〉 =

√
[2j − n]q[n + 1]q |n + 1〉

J− |n〉 =
√

[n]q[2j − n + 1]q |n − 1〉
J0 |n〉 = (n − j) |n〉

In this representation C |n〉 = [j]q[j + 1]q |n〉



Co-product

A coproduct on an algebra g→ g⊗ g is an algebra homomorphism:

∆([A,B]) = [∆(A),∆(B)] ∀A,B ∈ g

Define the co-product ∆ : Uq(sl2)→ Uq(sl2)⊗2 as follows

∆(J±) = J± ⊗ q−J0
+ qJ0 ⊗ J±

∆(J0) = J0 ⊗ 1 + 1⊗ J0

then

[∆(J+),∆(J−)] = [2∆(J0)]q [∆(J0),∆(J±)] = ±∆(J±)
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Quantum Hamiltonian

∆(Ci) = −qJ0
i

{
J+

i ⊗ J−i+1 + J−i ⊗ J+
i+1 + Bi,i+1

}
q−J0

i+1

Bi,i+1 =
(q j + q−j)(q j+1 + q−(j+1))

2(q − q−1)2

(
qJ0

i − q−J0
i

)
⊗

(
qJ0

i+1 − q−J0
i+1

)
+

(q j − q−j)(q j+1 − q−(j+1))

2(q − q−1)2

(
qJ0

i + q−J0
i

)
⊗

(
qJ0

i+1 + q−J0
i+1

)

H(L) :=
L−1∑
i=1

(
1⊗(i−1) ⊗∆(Ci)⊗ 1⊗(L−i−1) + cq,j1⊗L

)
cq,j =

(q2j − q−2j)(q2j+1 − q−(2j+1))

(q − q−1)2 s.t . H
(
⊗L

i=1|0〉
)
= 0



Symmetries of H

Iterate the co-product ∆n : Uq(sl2)→ Uq(sl2)⊗(n+1), i.e. for n ≥ 2

∆n(J±) = ∆n−1(J±)⊗ q−J0
+ q∆n−1(J0) ⊗ J±

∆n(J0) = ∆n−1(J0)⊗ 1 + 1⊗n ⊗ J0

Lemma

J ± := ∆L−1(J±) =
L∑

i=1

qJ0
1 ⊗ · · · ⊗ qJ0

i−1 ⊗ J±i ⊗ q−J0
i+1 ⊗ . . .⊗ q−J0

L

J 0 := ∆L−1(J0) =
L∑

i=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗ J0
i ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

(L−i) times

.

are symmetries of H(L).
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We have constructed a Uq(sl2)-symmetric linear operator H but it is

not a stochastic generator!

Strategy

I construct a non-trivial symmetry of H from the trivial ones: J ±,0

I transform H into a stochastic generator L via a transformation

L = G−1H G

I construct a non-trivial symmetry of L using the fact that if S is a
symmetry of H then G−1S G is a symmetry of L

I use the non-trivial symmetries of L to construct self duality
functions for the associated Markov process
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Ground State transformation

Lemma
Let H be a matrix with H(η, η′) ≥ 0 for η 6= η′.
Suppose g is a positive ground state. i.e. H g = 0 and g(η) > 0.
Let G be the matrix G(η, η′) = g(η)δ(η, η′). Then

L = G−1H G

is a Markov generator.

Proof.

L(η, η′) =
H(η, η′)g(η′)

g(η)

Therefore

L(η, η′) ≥ 0 if η 6= η′
∑
η′

L(η, η′) = 0



Exponential symmetries

I g(0) = ⊗L
i=1|0〉 is a ground state, i.e. Hg(0) = 0.

I For every symmetry [H,S] = 0 another ground state is g = Sg(0).

I The exponential symmetry

S+ = expq2(E) =
∑
n≥0

(E)n

[n]q!
q−n(n−1)/2

where
E = ∆(L−1)(qJ0

J+)

gives a positive ground state

g = S+g(0) =
∑
`1,...,`L

⊗L
i=1

(√(
2j
`i

)
q
· q`i (1+j−2ji)

)
|`i〉



ASEP(q,j) process

Definition
The Markov process ASEP(q, j) on [1,L] ∩ Z, denoted by (η(t))t≥0,
with state space {0,1, . . . ,2j}L is defined by

(LASEP(q,j)f )(η) =
L−1∑
i=1

(Li,i+1f )(η)

with

(Li,i+1f )(η) = qηi−ηi+1−(2j+1)[ηi ]q[2j − ηi+1]q(f (ηi,i+1)− f (η))

+ qηi−ηi+1+(2j+1)[2j − ηi ]q[ηi+1]q(f (ηi+1,i)− f (η))

Remark: it follows from L = G−1H G.



ASEP(q,j) process: special cases

(Li,i+1f )(η) = qηi−ηi+1−(2j+1)[ηi ]q[2j − ηi+1]q(f (ηi,i+1)− f (η))

+ qηi−ηi+1+(2j+1)[2j − ηi ]q[ηi+1]q(f (ηi+1,i)− f (η))

I q = 1→ SEP(j): symmetric partial exclusion
jump right at rate ηi(2j − ηi+1), jump left at rate (2j − ηi)ηi+1

I j = 1/2→ ASEP(q): asymmetric exclusion
jump right at rate q−1 , jump left at rate q

I j =∞→ TAZRP(q) : totally asymmetric zero range
after rescaling time t → q4j−1t , jump right at rate 1−q2ηi

1−q2



3. Properties of ASEP(q, j)



Properties of ASEP(q,j)

Theorem
a) The ASEP(q, j) is well-defined on Z and is a monotone process.

b) The ASEP(q, j) on Z has a family (labeled by α > 0) of reversible
product measures with marginals

Pα(ηi = x) =
αx

Zi,α

(
2j
x

)
q
· q2x(1+j−2ji)

c) The ASEP(q, j) has translation invariant stationary product mea-
sures only for j = 1/2 and for j →∞.

Proof of b) for α = 1: using H = HT

G2L = (G2G−1HG) = (GHG−1)G2 = LT G2



Self-duality of ASEP(q, j)

Theorem
The ASEP(q, j) on Z is self-dual on

D(η, ξ) =
L∏

i=1

[ηi ]q!

[ηi − ξi ]q!

Γq(2j + 1− ξi)

Γq(2j + 1)
· q(ηi−ξi )[2

∑i−1
k=1 ξk +ξi ]+4jiξi · 1ηi≥ξi

Proof: it follows from the general method

I d = G−2 is a trivial duality function
I [H,S+] and L = G−1HG, thus [L,G−1S+G] = 0.
I D = (G−1S+G)G−2 = G−1S+G−1 is a duality fct.



Current of ASEP(q, j)

Definition
Let

Ni(t) :=
∑
k≥i

ηk (t)

The current Ji(t) during the time interval [0, t ] across the bond (i−1, i)
is defined as the net number of particles traversing the bond in the
right direction:

Ji(t) = Ni(t)− Ni(0)

Remark: let ξ(i) be the configuration with 1 dual particle:

ξ
(i)
m =

{
1 if m = i
0 otherwise

then

D(η, ξ(i)) =
q4ji−1

q2j − q−2j · (q
2Ni − q2Ni+1)



First q2-moment of the current

Theorem

Eη
[
q2Ji (t)

]
= q

∑
k<i ηk

−
∑
k<i

q−4jk E
[
q4jX(t)

(
1− q−2ηX(t)

)
q2(NX(t)(0)−Ni (0)) | X (0) = k

]
with X (t) a random walker on Z jumping left at rate q2j [2j]q and jump-
ing right at rate q−2j [2j]q

P(X (t) = z | X (0) = k) = e−[4j]q tq−2j(z−k)Iz−i(2[2j]qt)

In(t) modified Bessel fct.



First q2-moment of the current

Proof: Duaility gives

Eη(D(η(t), ξ(i))) = Eξ(i)(D(η, ξ(X(t)))

Eη
[
q4ji · (q2Ni (t) − q2Ni+1(t))

]
= Eξ(i)

[
q4jX(t) · (q2NX(t) − q2NX(t)+1)

]
Therefore

Eη[q2Ni (t)] = Eη[q2Ni+1(t)] + q−4jiEξ(i)

[
q4jX(t) · (q2NX(t) − q2NX(t)+1)

]
Multiply by q−2Ni (0) to get a recursion relation for the current and
iterate.



Step initial condition

Proposition

For the step initial conditions η± ∈ {0, . . . ,2j}Z defined as

η+
i :=

{
0 for i < 0
2j for i ≥ 0

η−i :=

{
2j for i < 0
0 for i ≥ 0

one has

Eη+

[
q2Ji (t)

]
= q4j max{0,i}

{
1 + q−4ji Ei

[(
1− q4jX(t)

)
1X(t)≥1

]}
Eη−

[
q2Ji (t)

]
= q−4j max{0,i}

{
1− Ei

[(
1− q4jX(t)

)
1X(t)≥1

]}



Step initial condition

Remark 1: asymptotics

lim
t→∞

Eη+

[
q2Ji (t)

]
= q4j max{0,i}

(
1 + q−4ji

)
shock

lim
t→∞

Eη−
[
q2Ji (t)

]
= 0 rarefaction fan

Remark 2: contour integral

Eη+

[
q2Jk (t)

]
=

q4j max{0,k}

2πi

∫
e
−

q2j [2j]3q (q−1−q)2 z

(1+q4j z)(1+z)
t
(

1 + z
1 + q4jz

)k dz
z

where the integration contour includes 0 and −q−4j but does not in-
clude −1.


