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Abstract

We review recent work on a constructive Lie algebraic approach to
duality. The first part is an overview of symmetric models, the second
deals with their Lie algebraic structure and the last part deals with the
corresponding asymmetric processes obtained via q-deformation of the
corresponding Lie algebra. Examples include processes modelling heat
conduction, particle transport models of exclusion and inclusion type,
models of population dynamics and agent based wealth distribution
models.
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1 Introduction

Duality is a technique that has been used in interacting particle systems
[21], [15], and stochastic models of population genetics [9]. In [18] and [19]
it was realized that dualities in the context of both the symmetric and the
asymmetric exclusion process appear to be a consequence of the presence of
so-called “non-abelian symmetries”, i.e., operators commuting with the gen-
erator. This was further exploited for SU(2) with spin 1/2 representations
in [16]. In [11, 10] we showed several new dualities, using both SU(2) (ex-
clusion type processes), SU(1, 1) (inclusion type processes) and Heisenberg
algebra (independent walkers), and established a general relation between the
existence of operators that commute with the generator and self-duality func-
tions. This relation makes it possible to constructively search for generators
that have a rich set of commuting operators. The set of commuting operators
is naturally an algebra, and endowed with the commutator is a Lie algebra.
It is therefore natural to think that generators with a rich class of commuting
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operators can be constructed from Lie algebraic considerations. This is im-
plemented by starting from a central element in a Lie algebra and correctly
“lifting” it to act on more variables via a co-product (an operation conserving
zero commutators). Natural central elements are given by the Casimir ele-
ment(s). Going to a concrete representation of the Lie algebra then yields (in
many cases) an operator that is already close to a generator. More precisely,
it is a generator plus central elements which can be omitted from the point of
view of symmetries, or it is a generator plus a multiplication operator (“mass
is not conserved”) which can be turned into a generator by a so-called ground
state transformation (if a strictly positive ground state exists). The second
scenario is usually what happens if one passes from the symmetric processes
(classical Lie algebras) to their asymmetric counterparts, which amounts to
consider the q-deformed algebras. We will illustrate here this technique and
its applications in examples from no-equilibrium particle systems and heat
conduction models.

2 Lecture 1: Symmetric Models

A stochastic non-equilibrium chain (= one dimensional model) is a model on
the state space K{1,...,N} with generator of the form

L = L1 +
N−1∑
i=1

Li,i+1 + LN (1)

here the bulk part
∑N−1

i=1 Li,i+1 models transport between lattice sites i, i+ 1,
and the boundary part L1,LN models contact with a reservoir at left and
right ends of the chain. We call Li,i+1 the bulk single edge generator. This is
actually the crucial object we are after (in some sense the “correct” reservoirs
will also be determined once the bulk part of the generator is found). The
single site state spaceK is depending on the models {0, 1, . . . , 2j}, N [0,∞) or
R. We will restrict here to systems with a single conserved quantity (particle
number or total energy).

The reservoirs are (therefore) characterized by a single parameters (the
density, or chemical potential, the temperature) and are such that when the
parameters of the two reservoirs are equal the system is in equilibrium, i.e.,
selects one particular equilibrium state of the one-parameter family of equi-
librium measures (stationary measures) of the bulk generator. The models
which we want to study are such that

1. The bulk part has a (single) conserved quantity (total number of par-
ticles, total energy).
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2. The bulk part is self-dual or has a “nice” dual.

3. The full system has a dual where the reservoirs are replaced by absorb-
ing boundaries.

This leads to the following general results

1. The system has a unique stationary state, for equal reservoir parame-
ters this is a stationary measure of the bulk part. For different reser-
voir parameters this is a so-called non-equilibrium steady state (NESS)
which carries a current (transport from one reservoir to the other).

2. The non-equilibrium profile is characterized by a single random walker
absorbed at the left or right end. In the symmetric case this implies a
linear profile (Fick’s law, Fourier law).

3. For the computation of well-chosen n-point correlation functions, we
need exactly n dual particles. I.e., quantities of a possible large system
can be computed by only a few dual particles (“from many to few”). For
n = 2 these can be computed (sometimes) analytically. The asymptotic
behavior is multi-linear (microscopic multi-linearity is not guaranteed
by duality).

REMARK 2.1. For systems with duality or self-duality, we can also easily
define the infinite volume limit, which would be a problem for processes like
the SIP because of unbounded number of particles.

We start now with an overview of the various symmetric models. By
symmetric here we mean that the system in equilibrium (for equal reservoir
parameters) is reversible.

2.1 Models of inclusion type

These models turn up in modelling heat transport (transport of energy),
wealth distribution, population genetics, particle transport (particle models
where particles attract each other). I will describe the bulk generators (the
possible boundary generators are more or less fixed by the requirement that
the dual is absorbing).

1. The symmetric inclusion process. SIP(2k), k > 0.
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a) State space NN bulk generator

Li,i+1f(η) = ηi(2k+ηi+1)(f(ηi,i+1)−f(η))+ηi+1(2k+ηi)(f(ηi+1,i)−f(η))

The generator Li,i+1 conserves ηi + ηi+1, so the bulk process con-

serves the total number of particles
∑N

i=1 ηi.

b) Stationary (reversible) product measures: products of discrete
Gamma distributions with shape parameter 2k, i.e., with marginals

ν2k,λ(n) = (1− λ)2kλ
n

n!

Γ(2k + n)

Γ(2k)

=
λn

Zλ

(
2k − 1 + n

n

)
(2)

where 0 < λ < 1, and Zλ = (1−λ)−2k is the normalizing constant.

Special case 2k = 1, then these measures are geometric, for k =
m/2, m ∈ N0 they are negative binomial. They also satisfy the
“addition” property X ≈ ν2k,λ, Y ≈ ν2k′,λ, X ⊥ Y , then X + Y ≈
ν2k+2k′,λ

c) Natural polynomials (normalized factorial moments) associated to
the reversible product measures are

d2k(n,m) =

{
m!

(m−n)!
Γ(2k)

Γ(2k+n)
n ≤ m

0 otherwise

The link between these polynomials and the reversible product
measures is

∞∑
m=0

d2k(n,m)ν2k,λ(m) = ρ(λ)n (3)

with ρ(λ) = λ
1−λ

d) These polynomials are naturally extended to the multivariate case
by

D2k(ξ, η) =
N∏
i=1

d2k(ξi, ηi)

If we denote by
∑n

i=1 δxi a configuration of particles where par-
ticles are located at (x1, . . . , xn) (with possible repetitions), and
Λ : {1, . . . , N} → (0, 1) denotes a profile for the parameter λ then
the relation (3) becomes∫

D2k

(
n∑
i=1

δxi , η

)
⊗Ni=1 ν2k,λ(i)(dη) =

n∏
i=1

ρ(λ(xi)) (4)
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2. Thermalized SIP(2k): discrete redistribution process.
Instead of moving one particle at each jump, we “instantaneously”
equilibrate edges at the event times of a mean one Poisson process.
I.e., every edge has a clock ringing after an exponential (mean one)
time after which the masses (n,m) = (ηi, ηi+1) are replaced by

(n′,m+ n− n′)

where n′ has a Beta Binomial distribution with parameters n+m, 2k, 2k.
This is the distribution of X|X + Y = n + m where X, Y are iid with
distribution (2). It is also described by its distribution

Pn+m,2k,2k(n
′ = l) =

(
n+m

l

)
Epl(1− p)n+m−l

where E is expectation over p over the Beta(2k, 2k) distribution. For
2k = 1 this coincides with the discrete uniform distribution over the set
{0, 1, . . . , n+m}. For this particular case, the redistribution process is
also known as the dual KMP process. The reversible product measures
are of course the same, and so are the natural associated polynomials.

The single edge generator is given by

Li,i+1f(η) =

ηi+ηi+1∑
n′=0

Pn+m,2k,2k(n
′)
(
f(ηi,i+1;n′,ηi+ηi+1−n′)− f(η)

)
where ηi,i+1;k,l denotes the configuration obtained from η by replacing
ηi with k and ηi+1 with l.

3. Diffusion of energy: The Brownian Energy Process (BEP)(2k)

a) From SIP to BEP:
Rescaling ηi = bKzic, i = 1, . . . , N and letting evolve ηi, i =
1, . . . , N as the SIP(2k) gives that the process zi(Nt) converges
weakly to a diffusion process on [0,∞)N with generator

∑N
i=1 Li,i+1

where

Li,i+1 = zizi+1∂
2
i,i+1 − 2k(zi − zi+1)∂i,i+1 (5)

where

∂i,i+1 = ∂zi − ∂zi+1
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b) Reversible product measures are products of Gamma distributions with
shape parameter 2k, i.e. with marginal probability density

ν2k,λ(z) =
z2k−1

θ2kΓ(2k)
e−z/θ

c) Natural polynomials associated to the product measures are

d2k(n, z) =
znΓ(2k)

Γ(2k + n)
(6)

and multivariate

D2k(ξ, z) =
N∏
i=1

d2k(ξi, zi) (7)

d) The relation between the polynomials and the product measures is∫
D2k

(
n∑
i=1

δxi , η

)
⊗Ni=1 ν2k,θ(i)(dη) =

n∏
i=1

θ(xi) (8)

4. Continuous redistribution model: the thermalized BEP(2k)

a) Here we consider a Poisson process associated to each edge and
on the event times redistribute the mass on that edge as follows:
an initial mass (z, z′) goes to

((z + z′)U, (z + z′)(1− U))

with U Beta(2k, 2k) distributed, i.e., with density proportional to
u2k−1(1− u)2k−1 on [0, 1]. The single edge generator is

Li,i+1f(z) = E
(
f
(
zi,i+1;(zi+zi+1)U,(zi+zi+1)(1−U)

)
− f(z)

)
where E denotes expectation over U , over the Beta(2k, 2k) distri-
bution.

b) Because the Beta distribution can be obtained as the distribution
of X/(X +Y ) with X, Y independent Gamma, the redistribution
can also be described as follows: when the clock of the edge i, i+1
rings, “thermalize” this edge by running the BEP(2k) for infinite
time, this leads to a product of Gamma distributions, conditioned
on the sum.
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c) This model has the same reversible product measures, and the
same natural polynomials.

d) For 2k = 1 the model is the well-known KMP model; in that case
U is uniform on [0, 1].

e) The model can also be obtained by rescaling the thermalized SIP
via the choice

ηi = Kxi

and letting K →∞.

REMARK 2.2. A final model which we will not further discuss here, but which
appeared as a starting model in [11] is the Brownian Momentum Process
(BMP) with single edge generator given by

(xi∂xi+1
− xi+1∂xi)

2

on the state space R2. Now xi is interpreted as momentum at site i, and this
process conserves the total energy x2

i +x2
i+1, and randomly “rotates” the angle

θi,i+1 = arctan(xi+1/xi). For the boundary generators one chooses Ornstein
Uhlenbeck processes

L1 = 2T1∂
2
1 − x1∂1

For zi = x2
i we have that zi evolves as the BEP with 2k = 1/2. More

generally, we can allow m momenta at each vertex and choose the single
edge generator

m∑
α,β=1

(xi,α∂xi+1,β
− xi+1,α∂xi,β)2

and boundary generator independent Ornstein Uhlenbeck processes

L1 =
m∑
α=1

2T1∂
2
1,α − x1,α∂1,α

then zi =
∑m

α x
2
i,α evolves as BEP with 2k = m/2.

2.2 Models of SEP type: short overview

a) State space {0, 1l, . . . , 2j}N , where j is half-integer. Bulk single edge
generator:

Li,i+1f(η)

= ηi(2j − ηi+1)(f(ηi,i+1)− f(η)) + ηi+1(2j − ηi)(f(ηi+1,i)− f(η))

j = 1/2 corresponds to the standard symmetric exclusion process.
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b) Reversible product measures νρ: products of binomials with marginals

νρ(k) =

(
2j

k

)
ρk(1− ρ)2j−k

c) Special polynomial

d2j(k, n) =

(
n
k

)(
2j
k

)
for 0 ≤ k ≤ n ≤ 2j (defined to be zero otherwise).

We can then also “thermalize” this model, yielding a model where more
particles jump at the same “edge” event (as we did for the SIP).

2.3 Dualities

Let us first give the definition of duality

DEFINITION 2.1. We say that the Markov processes X = Xt, t ≥ 0 on the
state space Ω and Y = Yt, t ≥ 0 on the state space Ω′ are dual to each other
with duality function D : Ω′ × Ω→ R if for all x ∈ Ω, y ∈ Ω′ and t > 0

Ex(D(y,Xt))) = Êy(D(Yt, x)) (9)

Ex (resp. Êy ) denoting expectation over X starting at x (resp. Y starting at
y) In case X = Y we say that the process is self-dual.

We denote this by X −→D Y. We then have the following dualities

1. Self-duality of SIP
SIP (2k) −→D SIP (2k)

with duality functions the “natural polynomials” D(ξ, η).

2. Duality of BEP and SIP

BEP (2k) −→D SIP (2k)

with duality functions the “natural polynomials” D(ξ, z).

3. Self-duality of Thermalized SIP with duality functions the “natural
polynomials” D(ξ, η).

4. Duality of Thermalized BEP with thermalized SIP with duality func-
tions the “natural polynomials” D(ξ, z). (for 2k = 1 this is exactly the
duality from the original KMP model).
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2.4 Adding boundary reservoirs

The boundary reservoir generators are chosen in such a way that the dual
process (which is SIP or thermalized SIP) becomes absorbing (it will have
two more lattice sites associated to the absorbing boundaries), and such that
in the bulk the duality functions are the same, and at the boundary are
“thermalized”. We first illustrate this for SIP.

DEFINITION 2.2. 1. The SIP with absorbing boundary conditions is the
process η∗(t), t ≥ 0 on N{0,...,N+1} with generator

Lf(η) =
N∑
i=1

LSIPi,i+1 + L1,0 + LN,N+1

with
L1,0f(η) = aη1(f(η1,0)− f(η))

LN,N+1f(η) = bηNf(ηN,N+1)− f(η))

In this process, every particle (independently) can go from 1 to 0 at
rate a, and from N to N + 1, after which it is absorbed. There is no
interaction between absorbed and non-absorbed particles.

2. The SIP with reservoirs has boundary generators

L1f(η) = α(2k + η1)(f(η0,1)− f(η)) + γη1(f(η1,0)− f(η))

LNf(η) = δ(2k + ηN)(f(ηN+1,N)− f(η)) + βηN(f(ηN,N+1)− f(η))

where now η0,1 means a particle extra at 1. In this process with specific
rates, particles are injected or removed at the boundary sites 0, N .

REMARK 2.3. Notice that the rates at the boundary are “birth” and “death”
rates compatible with the stationarity of the product reversible measures.

We then find that absorbing SIP with absorbing rates a = γ−α, b = β−δ
is dual to the reservoir SIP provided a = γ − α > 0, b = β − δ > 0. As
duality function, we obtain

Aξ0BξN+1

N∏
i=1

d2k(ξi, ηi)

with

A =
α

γ − α
,B =

δ

β − δ
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Similarly, one can introduce boundary generators for the BEP, such that
the duality functions between BEP + boundaries and absorbing SIP are of
the form

T ξ0L T
ξN+1

R

N∏
i=1

d2k(ξi, xi)

This fixed the boundary generators to be of the form

L1 = TL(2k∂z1 + z1∂
2
z1

)− 1

2
z1∂z1

2.5 Applications

1. Stationary profile.

2. Uniqueness of the NESS and formula for the stationary expectation of
duality function in terms of absorption probabilities.

3. Macroscopic limits.

2.6 Some different redistribution models with duality

1. Wealth distribution model with propensities.

2. Immediate exchange model in econophysics.

3 Lecture 2: The Lie algebraic structure for

symmetric models

3.1 Duality relation between operators

The duality between processes reduces often to the duality between their
corresponding generators. I.e., two generators L (working on C (Ω) and L̂
(working on C (Ω′) are dual with duality function D (notation L̂ −→D L if
for all x ∈ Ω, y ∈ Ω′

LrightD(y, x) = L̂leftD(y, x) (10)

where L acts on x, L̂ acts on y.
More generally, two operators A, Â are dual with duality function D if

ArightD(y, x) = ÂleftD(y, x)

The following are elementary but useful properties of the relation −→D.
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PROPOSITION 3.1. 1. Sums and products. If A −→D A′, B −→D B′

then A+B −→D A′ +B′, AB −→D B′A′.

2. Symmetries. If A −→D A′ and [A, S] = 0, then A −→SrightD A′.
Here [A, S] = AS − SA denotes the commutator. If A −→D A′ and
[A′, S ′] = 0 then A −→S′leftD A′.

3. Cheap duality function. If Ω is countable, and a reversible measure
exists for L, then

L −→D L

with

D(x, y) =
1

µ(x)
δx,y

Property one shows that the relation −→D turns an algebra of operators
into an algebra with opposite (in sign) commutation relations, in other words
turns an algebra into its dual (with product (a ∗ b = b.a)). Conversely, if
one has a set of operators {ai, i ∈ I} with commutation relations, and a
set of operators {a′i, i ∈ I} with opposite commutation relations, then they
are candidates for a relation of the type −→D. More precisely if we find D
such that for all i ∈ I ai −→D a′i then for every elements A in the algebra
generated by {ai, i ∈ I}, there exists a corresponding element A′ in the
algebra generated by {a′i, i ∈ I}, such that A −→D A′. This means that
we have to check only duality for the generators of an algebra in order to
conclude duality of the algebras.

REMARK 3.1. If the state space is finite or countable, one can rewrite the
(self-)duality relation

LleftD(y, x) = L̂rightD(y, x)

in matrix form

LD = DL̂T

where T denotes transposition. This also explains the fact that products ap-
pear in reverse order when passing to dual objects: (AB)T = BTAT .

3.2 Elementary examples from the Heisenberg algebra

The Heisenberg algebra is generated by two elements a, a† which satisfy

[A,A†] = I
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so the dual algebra satisfies [a, a†] = −I. A representation is given by A =
d/dx, A† = x. A discrete representation of the dual algebra is given by

af(n) = nf(n− 1), a†f(n) = f(n+ 1).

A continuous representation of the dual algebra is given by

b = x, b† =
d

dx
.

A continuous representation of the algebra is

A† = x,A =
d

dx
.

The intertwiners between the discrete a, a† and A,A† (duality functions) are

a −→D A, a† −→D A†

with D(n, x) = xn, and between b, b† and A,A†

b −→D A, b† −→D A†

with D(y, x) = exy. Some illustrations:

1. Wright Fisher and Kingman’s coalescent block counting pro-
cess.

x(1− x)
d2

dx2
−→D a2a†(I − a†)

The operator

a2a†(I − a†)f(n) = n(n− 1)(f(n− 1)− f(n))

is the generator of the Kingman coalescent block counting process.
So the moment duality between the Wright Fisher diffusion and the
Kingman’s coalescent follows.

2. Brownian motion. Similarly,

1

2

d

dx2
−→D 1

2
y2

and so by exponentiation, one finds the well-known simple formula

ExeWty = e
1
2
y2texy

where Wt denotes Brownian motion, and Ex expectation starting from
x.
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3. Independent random walkers. Working now with a two vertex
system, the operator

L = −(a1 − a2)(a†1 − a
†
2)f(n1, n2)

= n1(f(n1 − 1, n2 + 1)− f(n1, n2)) + n2(f(n1 + 1, n2 − 1)− f(n1, n2))

describes independent symmetric continuous-time random walkers. It
commutes with a1 + a2, a

†
1 + a†2. The reversible measure is product of

Poisson, and as a consequence a cheap self-duality function is

Dcheap(m1,m2;n1, n2) = n1!n2!δm1,n1δm2,n2

working with ea1+a2 on the m1,m2 variables, using

ea
†
δm,n =

(
ea
†
δm,·

)
(n) =

(a†)n−m

(n−m)!
(δm,·) (n) =

1

(n−m)!

gives

D(m1,m2;n1, n2) =
n1!n2!

(n1 −m1)!(n2 −m2)!

as a self-duality function.

3.3 Casimir element of U (SU(2)) and U (SU(1, 1))

If we want to find a bulk single edge generator satisfying self-duality prop-
erties, then in view of proposition 3.1 we have to find commuting operators.
Conversely, if we find a generator which already by construction has commut-
ing operators, then we have self-duality functions. It is exactly this which we
will do, using well-known central elements of a Lie algebra and lifting them
to the tensor product (i.e., making an operator working on a configuration
space with two vertices).

3.3.1 SU(2)

U (SU(2)) is the Lie algebra generated by three elements J+, J−, J0 with
commutation relations (Lie brackets)

[J+, J−] = 2J0, [J0, J±] = ±J±

A standard representation is the 2j + 1 dimensional representation given by

J+|n > = (2j − n)|n+ 1 >

J−|n > = n|n− 1 >

J0|n > = (n− j)|n >
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on an orthonormal basis |0 >, . . . , |2j >
The corresponding representation of the dual algebra is given by the op-

erators working on functions f : {0, . . . , 2j} → R by

J +f(n) = (2j − n)f(n+ 1)

J −f(n) = nf(n− 1)

J 0f(n) = (n− j)f(n)

An important central element is the Casimir element

C = J−J+ + J0(J0 + I)

where I denotes identity. This element commutes with the generators:

[C, J±] = 0, [C, J0] = 0.

E.g.

[C, J−] = J−[J+, J−] + J0[J0, J−] + [J0, J−]J0 + [J0, J−]

= 2J−J0 − J−J− − J−J0 − J−

= [J−, J0]− J− = J− − J− = 0

and analogously for J+, J0.

3.3.2 SU(1, 1)

U (SU(1, 1)) is generated by K±, K0 with commutation relations

[K+, K−] = −2K0, [K0, K±] = ±K±,

so they differ from the previous commutation relation by a sign in the
[K+, K−] = −2K0 (as opposed to [J+, J−] = 2J0 in the U (SU(2)) case).
The consequences are however important: this group is not compact and the
corresponding algebra has no finite dimensional representations. The models
built from these commutation relations turn out to be “bosonic” counterparts
of their “fermionic” U (SU(2)) counterparts (inclusion versus exclusion, at-
tractive versus repulsive interaction).

The Casimir element is now given by

C = K0(K0 − I)−K+K−

where I denotes identity. Indeed we see once more that C is central, e.g.

[C,K−] = [K0, K−]K0 +K0[K0, K−]− [K0, K−]− [K+, K−]K−

= −K−K0 −K0K− +K− + 2K0K−

= [K0, K−] +K− = 0
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3.4 Co-product and computation of the co-product of
the Casimir in SU(2) and SU(1, 1)

A co-product on an algebra A is an algebra homomorphism from A →
A ⊗A :

∆ : A → A ⊗A

So it suffices to define it on the generators. Moreover, as a consequence
of the homomorphism property, it holds that

[A,B] = 0 implies [∆(A),∆(B)] = 0

For both U (SU(2)),U (SU(1, 1)) we define the co-products

∆(Jα) = Jα1 + Jα2 = Jα ⊗ I + I ⊗ Jα (11)

Let us see for U (SU(1, 1)) case that this indeed is a “consistent” definition,
i.e., we verify e.g.

∆[K+, K−] = [∆(K+),∆(K−)]

∆([K+, K−]) = −2∆(K0) = −2(K0
1 +K0

2)

and

[∆(K+),∆(K−)] = [K+
1 +K+

2 , K
−
1 +K−2 ]

= [K+
1 , K

−
1 ] + [K+

2 , K
−
2 ]

= −2(K0
1 +K0

2)

As a consequence of the relation [C,A] = 0 for C the Casimir element, and A
every other element of the algebra, we have [∆(C),∆(A)] = 0, and hence in
particular, in U (SU(2)) (resp. U (SU(1, 1))), ∆(C) commutes with Jα1 +Jα2
(resp. Kα

1 +Kα
2 ).

3.5 From the co-product of the Casimir to the gener-
ator

U (SU(2))
Let us now compute, first in U (SU(2)) the co-product of the Casimir.

∆(J0(J0 + I) + J−J+)

= (J0
1 + J0

2 )2 + (J0
1 + J0

2 ) + (J−1 + J−2 )(J+
1 + J+

2 )

= (J0
1 )2 + J1

0 + (J0
2 )2 + J0

2

+ 2J0
1J

0
2 + J−1 J

+
1 + J−2 J

+
2

+ J−1 J
+
2 + J−2 J

+
1

= C1 + C2 + J−1 J
+
2 + J−2 J

+
1 + 2J0

1J
0
2

16



This operator commutes with Jα1 + Jα2 , and, therefore, so does

H = J−1 J
+
2 + J−2 J

+
1 + 2J0

1J
0
2

because C1, C2 also commute with Jα1 +Jα2 . Let us now compute this operator
H in the concrete representation of the dual algebra. We denote η = η1, η2 a
particle configuration ηi ∈ {0, . . . , 2j}, and denote η12 = (η1 − 1, η2 + 1)

Hf(η1, η2) = η1(2j − η2)f(η − 1, η2 + 1) + (2j − η1)η2f(η1 + 1, η2 − 1)

+ 2(η1 − j)(η2 − j)f(η1, η2)

+ η1(2j − η2)(f(η12)− f(η)) + η2(2j − η1)(f(η21)− f(η))− 2j2f(η1, η2)

denoting the generator

Lf(η) = η1(2j − η2)(f(η12)− f(η)) + η2(2j − η1)(f(η21)− f(η))

we see that H equals L− 2j2I. Hence, the operators that commute with H
coincide with those that commute with L.

As a conclusion we followed the following road

1. Start from the central element C.

2. Apply the co-product.

3. Remove Casimirs and constants.

4. Arrive at the generator of a Markov process.

U (SU(1, 1))
Let us now show that applying the same procedure in U (SU(1, 1)) with a
discrete representation of the dual algebra, leads to the SIP.

∆(K0(K0 − I)−K+K−)

= (K0
1)2 −K0

1 + (K0
2)2 −K0

2

−K+
1 K

−
1 −K+

2 K
−
2 + 2K0

1K
0
2 −K+

2 K
−
1 −K−1 K+

2

= C1 + C2 − (−2K0
1K

0
2 +K+

2 K
−
1 +K−1 K

+
2 )

From this computation, we conclude that

H = −2K0
1K

0
2 +K+

2 K
−
1 +K−1 K

+
2

commutes with Kα
1 +Kα

2 . Now consider the representation

K+f(n) = (2k + n)f(n+ 1) (12)

K−f(n) = nf(n− 1) (13)

K0f(n) = (k + n)f(n) (14)
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Computing H then gives H = L− 2k2I with

L = η1(2k + η2)(f(η12)− f(η)) + η2(2k + η1)(f(η21)− f(η))

which is the generator of the SIP (2k).

3.5.1 Co-associativity of the co-product

The co-product can be defined on multiple tensor products by the co-associativity
property which is

(I ⊗∆)(∆(A)) = (∆⊗ I)(∆(A))

Indeed, e.g. in the SU(2) case with A = J+ say, we compute, using ∆(I) =
I ⊗ I

(I ⊗∆)(∆(J+)) = (I ⊗∆)(J+ ⊗ I + I ⊗ J+)

= J+ ⊗ I ⊗ I + I ⊗ J+ ⊗ I + I ⊗ I ⊗ J+

and (∆ ⊗ I)(∆(J+)) yields the same. Therefore we can define the n-fold
co-product ∆(n) : A → A ⊗ . . .⊗A inductively via

∆(n) = ∆(n−1) ⊗ I

which e.g. in the SU(2) case gives

∆(n)(Jα) =
n∑
i=1

Jαi

3.6 Consequences of the construction: self-duality of
SEP and SIP

Let us start with the U (SU(2)) case. We have arrived now at a generator
which by construction commutes with Jα1 + Jα2 .

We will now act with one of the symmetries on the η-variable of the cheap
duality function

D(ξ, η) =
1(
2j
ξi

)δηi,ξi
Notice that for l ≥ m we have

(J−)kδl,m =

{
l(l − 1) . . . (m+ 1) = (l −m)!

(
l
m

)
if k = (l −m)

0 otherwise

18



where (J−)k works on the l-variable. As a consequence

eJ
−
1 δl,m =

(J−)l−m

(l −m)!
δl,m =

(
l

m

)
As a further consequence

eJ
−
1 +J−2 D(ξ, η)( working on η)

equals

D(ξ, η) =
∏
i

(
ηi
ξi

)(
2j
ξi

)
and thus we find that this is a self-duality function for the SEP(2j).

Similarly, we find the self-duality function of the SIP(2k) by applying the

symmetry eK
−
1 +K−2 (working on the η variable) to the cheap duality function.

REMARK 3.2. We gave now the procedure to produce a generator for a two
site system. We then just copy this on the nearest neighbor edges to find
(in U (SU(2)) case and analogously in the U (SU(1, 1)) case, as a starting
operator

N∑
i=1

[∆(C)]i,i+1

which then commutes with
∑
Jαi . Indeed

[∆(C)]i,i+1 = I ⊗ I ⊗ · · · (Ci + Ci+1)⊗ I ⊗ . . .⊗ I

commutes automatically with Jαk , k 6∈ {i, i+ 1}. Therefore[
N∑
i=1

[∆(C)]i,i+1,
N∑
i=1

Jαi

]
=
∑
i

[
[∆(C)]i,i+1, J

α
i + Jαi+1

]
= 0

4 Lecture 3: The ASIP(q, k) and its limits

4.1 From a Hamiltonian to a generator: ground state
transformation

The procedure to start from a central element and lift it to the tensor product
by a co-product is very general, but does not necessarily give a Markov gen-
erator. In the symmetric case, we have seen that we had a Markov generator
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+ central elements. In the asymmetric case (where co-products are more in-
volved) the procedure usually yields a Schrödinger operator, i.e., a generator
plus a multiplication operator. Here we first review how from such a opera-
tor a Markov process can be obtained, provided a non-negative ground state
exists. This is a variation on the theme how from the harmonic oscillator
Hamiltonian one arrives at the generator of the Ornstein Uhlenbeck process.

In general, if L is a Markov generator and eψ is in the domain, and such
that eψg is in the domain for sufficiently many g in the domain, then

Lψ(g) := e−ψL(eψg)− (e−ψL(eψ))g

is a generator. Examples

1. If L is of the form of a discrete jump process (with rates c) generator
on a finite state space,

Lg(x) =
∑
y

c(x, y)(f(y)− f(x))

then
Lψ =

∑
y

cψ(x, y)(f(y)− f(x))

with modified rates cψ(x, y) = c(x, y)eψ(y)−ψ(x).

2. If L = 1
2
d2

dx2
then with eψ = e−x

2/2 we find

Lψ = −x d
dx

+
1

2

d2

dx2

the Ornstein Uhlenbeck process.

As a consequence we have the following useful (somewhat informally stated)
proposition

PROPOSITION 4.1. Let H be an operator of the form

H(g) = Lg + fg (15)

with f a function and L a Markov generator. Assume there exists a function
of the form eψ (i.e., a positive function) such that

H(eψ) = 0

(so-called positive ground state). Then

Lψ(g) = e−ψH(eψg)
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is a Markov generator. Moreover, there is a one-to-one correspondence be-
tween operators S commuting with H and corresponding operators commuting
with Lψ via

S → Sψ = e−ψS(eψ·)
PROOF.

[Lψ, Sψ] = e−ψ[H,S]eψ

The condition that H is of the form (15) means in the discrete finite setting
that the matrix H has non-positive off-diagonal elements.

4.2 The q-deformed Lie algebra SUq(1, 1), co-product

We now follow the scheme which we followed in the symmetric case but for
the algebra Uq(SU(1, 1)) with commutation relations

[K0, K±] = ±K±, [K+, K−] = −[2K0]q,

where

[2K0]q =
q2K0 − q−2K0

q − q−1

0 < q < 1. Notice that for q = e−ε ≈ 1− ε

[2K0]q ≈
e−ε2K0 − eε2K0

e−ε − eε
≈ 2K0

so that in the limit q → 1 we find the classical U (SU(1, 1)) commutation
relations. Notice that K := qK0 is formal notation for an element of the
algebra with inverse K −1 = q−K0 , and one can rewrite the commutation
relations in the equivalent way

K K −1 = K −1K = I

K K+ = qK+K

K K− = q−1K−K

[K+, K−] = −K 2 −K −2

q − q−1

We prefer to go on with the (more suggestive) notation qK0 The Casimir
element is now

C = [K0]q[K
0 − 1]q −K+K− (16)

and the co-product is given by

∆(K±) = K± ⊗ q−K0 + qK0 ⊗K± (17)

∆(K0) = K0 ⊗ I + I ⊗K0 (18)
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4.3 The ASIP(q, k)

Applying the co-product to the Casimir leads to a Hamiltonian of the form
discussed in section 4.1. A trivial ground state is the vector ⊗Ni=10 >. This
groundstate is however not positive and will be turned into a positive ground
state by an “exponential” symmetry (see Gioia’s talk for the complete ex-
planation).

The process that comes out has the following single edge bulk generator

Lf(η) = qηi−ηi+1+(2k−1)[ηi]q[2k + ηi+1]q(f(ηi,i+1)− f(η))

+ qηi−ηi+1−(2k−1)[ηi+1]q[2k + ηi]q(f(ηi+1,i)− f(η) (19)

4.3.1 Basic properties

1. Reversible profile product measures.

Pα(ηi = n) = αn
(
n+ 2k − 1

n

)
q

q4kin

1 ≤ i ≤ N , α ∈ [0, q−(2k+1)) where the q-numbers are defined via

[n]q =
qn − q−n

q − q−1

e.g.
[0]q = 0, [1]q = 2, [2]q = q + q−1, [3]q = q2 + 1 + q−2, . . .

[n]q! = [n]q[n− 1]q . . . [1]q

(there is a suitable generalization for non-integer n given via the q-
Gamma function) and the q-deformed binomial coefficient (cf. Koekoek
and Swartouw) (

n

m

)
q

=
[n]q!

[m]q![n−m]q!

These measures have density profile

Eα(ηi) =
2k−1∑
l=0

1

q−2l(αq4ki−2k+1)−1 − 1

which is a decreasing function of i, with limi→∞ Eα(ηi) = 0.

2. Self-duality The ASIP(q, k) is self-dual with self-duality functions de-
fined as follows.

Ni(η) =
N∑
k=i

ηk
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Notice that
Ni(ηt)−Ni(η0) = Ji(t)

the total integrated current over the edge (i, i+ 1).

The duality function is best explained first for a single particle dual
configuration δl (single particle at site l).

D(δl, η) =
q−4kl+1

q2k − q−2k

(
q2Nl(η)− q2Nl+1(η)

)
So we have

ElD(δl(t), η) = Eη
q−4kl+1

q2k − q−2k

(
q2Nl(ηt) − q2Nl+1(ηt)

)
(20)

The l.h.s. of (20) is an expectation with respect to a single ASIP(q, k)
particle, which is a simple asymmetric random walk jumping to the left
at rate q−2k[2k]q and to the right at rate q2k[2k]q (drift to the left). For
a more general dual configuration, with n dual particles at different
locations l1, . . . , ln we get

D

(
n∑
i=1

δli , η

)
=
q−4k

∑n
m=1 lmq−n

2

(q2k − q−2k)n

n∏
m=1

(
q2Nlm (η)− q2Nlm+1(η)

)
4.4 Application: computation of q-moments of current

Let us consider one dual particle and start again from (20), and multiply
both sides with q−2Nl(η). We get

Eηq2Jl(t) = q−2ηlEηq2Jl+1(t)

+ q4klEl
(
q−4kl(t)q2(Nl(t)(η)−Nl(η)) − q2(Nl(t)+1(η)−Nl(η))

)
Iterating this we get

Eηq2Jl(t) = q2(N(η)−Ni(η)) −
l−1∑

n=−∞

q4knEnq−4kn(t)(1− q−2ηn(t))q2Nn(t)(η)−Nl(η)

(21)
where by definition 2(N(η) − Ni(η)) =

∑
n<i ηn (which can be infinite but

q∞ = 0). This relation has to be thought of as the analogue of the simple
expected number of particles formula in the symmetric case, where expected
number of particles can be obtained from the starting configuration and a
single symmetric random walker. Here it is the q-moment of the current
which can be obtained using a single asymmetric random walker.
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4.5 The diffusion limit q = 1− σ
N , ηi = ziN : ABEP(σ, k)

We will now take the limit where q = 1 − σ
N
→ 1 and ηi = bxiNc and scale

up time by a factor N , i.e. consider the process {xi(Nt), t ≥ 0}. Then Taylor
expansion shows that

lim
N→∞

L
ASIP(1− σ

N
,k)

i,i+1 F (xi, xi+1) = L
ABEP (σ,k)
i,i+1 F (xi, xi+1)

where

LABEP (σ,k) =
1

4σ2
(1− e−2σxi)(e2σxi+1 − 1)(∂xi − ∂xi+1

)2

− 1

2σ

(
(1− e−2σxi)(e2σxi+1 − 1) + 2k(2− e−2σxi − e2σxi+1)

)
(∂xi − ∂xi+1

)

This process can be compared to the Wright Fisher diffusion with mutation
(rate k) and selection (rate σ). Indeed, if σ is very small, this generator
becomes to first order in σ

xixi+1∂
2
i,i+1 − (2σxixi+1 + 2k(xi − xi+1))∂i,i+1

As a consequence of self-duality we “loose” the asymmetry for a finite number
of dual particles, and therefore the ABEP(σ, k) is dual to the SIP(k), i.e.,
a truly “asymmetric” process has a symmetric dual. The asymmetry σ is
hidden in the duality functions

Dσ(ξ, x) =
∏
i

Γ(2k)

Γ(2k + ξi)

e−2σEi+1(x) − e−2σEi(x)

2σ
(22)

where

Ei(x) =
N∑
k=i

xk

In particular Ei(x(t))−Ei(x(0) is the integrated energy current over the edge
(i−1, i). A computation such as we did for the ASIP can now be done, using
that the dual walker is now a symmetric continuous-time symmetric nearest
neighbor random walk jumping at rate 2k, for which we have the explicit
formula

Pi(l(t) = n) = e−4ktI|n−i|(4kt)

We get

EABEP (σ,k)
x e−2σJi(x(t)) = e−4kt

∑
n∈Z

e−2σ(En(x)−Ei(x))I|n−i|(4kt)

Notice in the limit σ → 0 this becomes the Beta(2k− 1, 2k− 1) distribution.
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4.6 The Asymmetric KMP process

Just as we thermalized the BEP process, obtaining thereby an energy re-
distribution process which is a generalization of the KMP process, we can
thermalize the ABEP, obtaining an asymmetric energy redistribution model,
with the same discrete dual, i.e., the thermalized SIP(2k). In this process we
get the following stochastic redistribution rule:

(x, y)→ (B(x+y)
σ (x+ y), (1−B(x+y)

σ )(x+ y))

where B
(E)
σ is a [0, 1] random variable with density E dependent density given

by

νσ,k(w|E) = Ce2σEw
(
(e2σEw − 1)(1− e−2σE(1−w))

)2k−1

For the choice 2k = 1 this yields the “correct” asymmetric analogue of the
KMP process.

4.7 The ABEP(q, k) as a non-local transformation of
the BEP(k)

Given that the ABEP is dual to a symmetric process (the SIP), one can ask for
its corresponding algebraic structure. The answer is that the symmetry of the
BEP is again (undeformed) SU(1, 1) but with a “conjugate” representation.
This is the content of the following proposition.

PROPOSITION 4.2. Define

Ei(x) =
N∑
l=i

xi

with EN+1(x) = 0 by definition. Next define

gi(x) =
e−2σEi+1(x) − e−2σEi(x)

2σ

Then, if X(t) = xi(t), i = 1, . . . , N evolves according to the ABEP(si, 2k),
then

Z(t) = g(X(t))

evolves according to BEP(2k).

25



4.8 Open issues

1. Multitype particle systems and Onsager symmetries.

2. Link with Matrix ansatz, multilinearity, Bethe ansatz.

3. Hydrodynamic limits for weakly asymmetric models of SIP type.
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orthogonal polynomials and their q -analogues. Springer Monographs in
Mathematics. Springer-Verlag, Berlin, 2010.

[14] Jeffrey Kuan Stochastic duality of ASEP with two particle types via
symmetry of quantum groups of rank two http://arxiv.org/abs/1504.

07173

[15] Liggett, T.M.: Interacting particle systems. Springer, Berlin, (1985).

[16] Lloyd P., Sudbury A., Donnelly P.: Quantum operators in classical prob-
ability theory: I. Quantum spin techniques and the exclusion model of
diffusion. Stoch. Processes Appl.61(2), 205221 (1996)

[17] Redig, Frank; Ruszel, Wioletta Multilinearity of the covariances in one-
dimensional models out of equilibrium. J. Phys. A 48 (2015), no. 22,
225002
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[19] Schütz, G.M.: Duality relations for the asymmetric exclusion process.
J. Stat. Phys. 86(5/6), 12651287 (1997)

27
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