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The stochastic Kuramoto model

We consider the system of N stochastic differential equations

dθi,t = ωi dt+
K

N

N
∑

j=1

sin(θj,t − θi,t) dt+ dBi,t, i = 1, · · · , N,

• θi ∈ S := R/2π (phase oscillators),

• K > 0 : interaction intensity

• {Bi}i : i.i.d. standard Brownian motions (thermal noise).

• {ωi}i : i.i.d. ∼ λ (local frequency of the particles, random environment).

Remarks

• Invariance by rotation : if {θj(t)}j=1...N is solution, so is

{θj(t) + ψ}j=1...N , for all ψ ∈ S.

• When ωi ≡ 0, the process is reversible under the invariant measure

πN,K (Hamiltonian Mean-Field model, HMF or XY model)

πN,K( dθ) ∝ exp

(

K

N

N
∑

i,j=1

cos(θi − θj)

)

dθ
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The (reversible) case without disorder : ωi ≡ 0.

dθi,t =
K

N

N
∑

j=1

sin(θj,t − θi,t) dt+ dBi,t, i = 1, · · · , N,

If K is sufficiently large, the dynamics leads to the synchronization of the

particles along a fixed nontrivial stationary density, at least on bounded time

intervals [0, T ].
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The (reversible) case without disorder : ωi ≡ 0.

dθi,t =
K

N

N
∑

j=1

sin(θj,t − θi,t) dt+ dBi,t, i = 1, · · · , N,

Remark

L. Bertini, G. Giacomin, C. Poquet [✎ PTRF 2014] have shown that, when one

looks at time scale of order N , the center of synchronization performs a

Brownian motion on the circle S.
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Adding disorder : traveling waves

dθi,t = ωi dt+
K

N

N
∑

j=1

sin(θj,t − θi,t) dt+ dBi,t, i = 1, · · · , N,

Competition between the mean-field term (→ synchronization) and the

disorder will induce traveling waves :

Set ωi = ω̄ for all i = 1, . . . , N . Then, the synchronized state will rotate with

speed ω̄.

More generally, by the change of variables

θi,t → θi,t − Eλ(ω)t,

one can always assume that the law of the disorder is centered

Eλ(ω) = 0.

Questions

• What is the influence of the disorder on the existence of traveling waves ?

• Does it depend only on the law λ or on a typical realisation of (ωi)?

• On which time scale do the traveling waves appear?
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With disorder : the asymmetric case

Suppose that we choose the frequencies ωi according to

λ = pδ−(1−p) + (1− p)δp with p < 1/2.
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With disorder : the asymmetric case

+p −(1− p)

• Who wins ? The majority of red rotators with low frequency or the

minority of blue rotators with large frequency ?

• This macroscopic asymmetry is essentially due to a law of large

numbers for the disorder (ωi)i : one should see deterministic traveling

waves on bounded time intervals [0, T ].
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The (disordered) empirical measure of the system is given by

µN,t :=
1

N

N
∑

j=1

δ(θj,t,ωj), t > 0
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Large population limit on bounded time scale [0, T ]

When Eλ(|ω|) < +∞, a.s. w.r.t (ωi)i > 1, µN converges as N → ∞ in

C([0, T ],M1(S× R)) to µt( dθ, dω) = pt(θ, ω) dθλ( dω), where pt solves the

mean-field equation

∂tpt(θ, ω) =
1

2
∂2
θpt(θ, ω)− ∂θ

(

pt(θ, ω)

(

ω −K

∫

sin(·) ∗ pt(·, ω̃)λ( dω̃)
))

.

pt(θ, ω) : density of rotators with phase θ and frequency ω, in the limit of an

infinite population.
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The asymmetric case

Suppose that the support of λ is included in [−δ, δ], for some δ > 0.

Theorem (Giacomin, L., Poquet, 2014)

For every K > 1, there exist δ0 = δ0(K) > 0, such that for all 0 < δ < δ0,

there exist qδ ∈ L2(ℓ⊗ λ) and cλ(δ) ∈ R such that

(t, θ, ω) 7→ qδ(θ − cλ(δ)t, ω)

is a solution of the mean-field equation. Moreover, this family of solutions is

stable by perturbation.

• The speed of rotation cλ(δ) depends only on the law of the disorder λ,

not on a realization of the disorder.

• If λ is symmetric, cλ(δ) = 0 : the mean-field limit on [0, T ] does not

explain anything on the existence of traveling waves in the symmetric

case.

• The proof of the theorem relies on PDE techniques and perturbation of

dynamical systems in infinite dimension.

In the case λ = pδ−(1−p) + (1− p)δp with p < 1/2, cλ(δ) > 0 : Red wins !
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With disorder : the symmetric case

Now, the disorder (ωi)i > 1 is chosen according to λ = 1
2
δ−1 +

1
2
δ1.

+1 −1
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With disorder : the symmetric case
Now, the disorder (ωi)i > 1 is chosen according to λ = 1

2
δ−1 +

1
2
δ1.

+1 −1

• Here, the law λ is symmetric : in the limit as N → ∞, there is no

asymmetry in the size of the two populations.

• But for finite (but large) population, finite-size fluctuations of the sample

(ω1, . . . , ωN) leads to a microscopic asymmetry in the size of the two

populations, of order
√
N .

• One expects (random) quenched traveling waves on a time scale of

order
√
N .
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Simulation in the symmetric case
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Traveling waves in the symmetric case : center of synchronization

Each trajectory corresponds to a typical sample of the disorder (ω1, . . . , ωN ).
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The symmetric case : first attempt

Since the traveling waves are due to the fluctuations of the disorder, one

should see something at the scale of the CLT of µN around its limit q.

Theorem (L., 2014)

There exists H Hilbert space, such that on each bounded time interval [0, T ],
the fluctuation process

ηN : t 7→
√
N(µN,t − qt),

converges as N → ∞ (in a weak sense) in C([0, T ],H) to the solution t 7→ ηt
of a linear SPDE

∂tηt = Lqtηt + Ẇt.

Moreover, as t→ ∞, there exists a nontrivial ℓ ∈ H , such that

ηt
t

→ ℓ, as t → ∞.

An informal consequence is that the center of synchronization can be written

as

ΨN,t ≈ Ψt +O

(

t√
N

)

.

But this is only formal since the limit as N → ∞ is not uniform in T !
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The symmetric case : second attempt

Suppose for simplicity that λ = 1
2
(δ−ω0

+ δω0
) for some ω0 > 0.

Fix N > 1 and denote N+ and N− the (random) number of rotators

possessing the disorder +ω0 and −ω0, respectively, and denote by

(θ±j,t)j=1,...,N± these rotators, solutions to

dθ+j,t = +ω0 +
K

N





N+
∑

l=1

sin(θ+l,t − θ+j,t) +
N−
∑

l=1

sin(θ−l,t − θ+j,t)



 dt+ dBj,t,

dθ−j,t = −ω0 +
K

N





N+

∑

l=1

sin(θ+l,t − θ−j,t) +

N−

∑

l=1

sin(θ−l,t − θ−j,t)



 dt+ dBj,t

The empirical measure µN is here identified with (µ+
N , µ

−
N ) defined by

µ±
N,t =

1

N±

N±
∑

j=1

δ
θ±
j,t
.

With this reformulation, the randomness of the disorder lies in the random

sizes (N+, N−) of the subpopulations.
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The mean-field limit is identified with (p+, p−) such that

∂tp
±
t (θ) =

1

2
∂2
θp

±
t (θ)− ∂θ

(

p±t (θ)

(

±ω0 −K sin ∗
(

p+t + p−t
2

)

(θ)

))

.

• q(θ) = ( 1
2π
, 1
2π

) is always a stationary solution.

• if K > 1, there exists ω0(K) such that for all ω0 6 ω0(K), the

mean-field equation admits a unique manifold of synchronized solutions

M = {qψ(·), ψ ∈ S},
where qψ(·) = q0(· − ψ).
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FIGURE – q0 = (q−, q+)
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The mean-field limit is identified with (p+, p−) such that

∂tp
±
t (θ) =

1

2
∂2
θp

±
t (θ)− ∂θ

(

p±t (θ)

(

±ω0 −K sin ∗
(

p+t + p−t
2

)

(θ)

))

.

• q(θ) = ( 1
2π
, 1
2π

) is always a stationary solution.

• if K > 1, there exists ω0(K) such that for all ω0 6 ω0(K), the

mean-field equation admits a unique manifold of synchronized solutions

M = {qψ(·), ψ ∈ S},

where qψ(·) = q0(· − ψ).

1
2π

q0(·)

qψ(·) := q0(· − ψ)

ψ

M
ψ
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Local stability of the stationary manifold M

Let q = (q+, q−) be an element of the stationary manifold M and add a small

perturbation ut = (u+
t , u

−
t ), with

∫

S
u±
t (θ) dθ = 0. Then one can easily show

that the evolution of ut is governed by

∂tut = Lqut +Rq(ut),

where

Lqu
±
t =

1

2
∂2
θu

±
t −∂θ

(

±ω0u
±
t − u±

t K sin ∗
(

q+ + q−

2

)

− q±K sin ∗
(

u+
t + u−

t

2

))

,

is the linearized operator around q and Rq is quadratic.

The evolution in the neighborhood of q ∈M is determined by the spectrum of

Lq .
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Definition

For q ∈M , let H−1
q be the dual of the space H1

q , closure of regular functions

(u+, u−) with zero mean value on S under the norm

‖u‖1,q :=

(

1

2

∑

σ=±

∫

S

(∂θu
σ(θ))2qσ(θ) dθ

) 1
2

.

Theorem [Bertini, Giacomin, Pakdaman, 2010], [Giacomin, L., Poquet, 2014] :

For q ∈M and ω0 small enough, Lq can be decomposed in H−1
q as follows :

M

q

Nq : ‖etLqu‖−1,q 6 Ce−λt‖u‖−1,q

Tq : Lqq′ = 0

Moreover, there is a well-defined projection on M adapted to Tq ⊕Mq for u in

a suitable neighborhood of M .

The neutral direction along Tq reflects the rotational invariance of the system.
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Long-time quenched traveling waves

Definition :

A sequence of disorder (ωi)i > 1 is said to be admissible if for all ζ > 0, there

exists N0 such that for all N > N0 such that max(
∣

∣ξ+N
∣

∣ ,
∣

∣ξ−N
∣

∣) 6 Nζ , where

ξ±N := N1/2

(

N±

N
− 1

2

)

.

Theorem [L., Poquet (2015)] :

Fix a constant τf and a phase ψ0 ∈ S and an admissible sequence (ωi)i > 1.

If for all ε > 0
lim
N→∞

P
(

‖µN,0 − qψ0
‖−1 ≤ ε

)

= 1 ,

then

lim
N→∞

P

(

sup
τ∈[0,τf ]

∥

∥µN,N1/2τ − qψ0+b(ξN )τ

∥

∥

−1
≤ ε

)

= 1 ,

where b is linear and satisfies for all ξ such that ξ+ + ξ− = 0

b(ξ) = 2ξ+ω0 +O(ω2
0), as ω0 → 0.
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We want to quantify how close the empirical measure of the system µN is

close to the manifold M. Introduce

νN,t := µN,t − qψ,

where qψ is any element of M . Using Ito formula and introducing the

semi-group e
tLqψ , one can write a mild formulation in H−1 of νN :

νN,t = e
tLqψ νN,0 +

∫ t

0

e
(t−s)Lqψ (Dq,N +Rq,N (νN,s)) ds+ ZN,t,

where

• Dq,N = ∂θ
(

qψ
{(

N+

N
− 1

2

)

(K sin ∗q+ψ ) +
(

N−

N
− 1

2

)

(K sin ∗q−ψ )
})

is

the drift part induced by the asymmetry of the disorder,

• Rq,N (νN) is a quadratic nonlinearity,

• ZN,t is the noise part.
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νN,t = e
tLqψ νN,0 +

∫ t

0

e
(t−s)Lqψ (Dq,N +Rq,N (νN,s)) ds+ ZN,t.

We have a competition between two effects :

• the random influence of the drift DN and noise ZN that moves away µN
from M

• the deterministic semigroup etLq that projects back µN along the normal

direction Nq ,

• the dynamics of µN is essentially along the neutral direction Tq : we

obtain a traveling wave whose speed depends only on the drift DN

• Since DN is a linear functional of
(

N+

N
− 1

2

)

, it is of order ≈ 1√
N

, so one

has to wait a time of order
√
N in order to see this traveling wave.
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Control of the noise

The noise term is, for all test fonction h

ZN,t(h) =
∑

σ=±

1

2Nσ

Nσ
∑

j=1

∫ t

0

∂θ
[(

e(t−s)L
∗
ψh
)σ]

(θσj (s)) dBj(s) ,

Proposition

For all ε > 0 and m > 0, there exists Cm,ε > 0 such that for all

0 6 s < t 6 T ,

E‖ZN,t − ZN,s‖2m−1 6
Cm,ε
Nm

(

(t− s)m(1/2−2ε) + (t− s)m
)

. (1)

This requires to know that the semigroup etLq is somehow regularizing : one

has fractional estimates of the type

∥

∥

∥e
tL∗
qu
∥

∥

∥

1+2β
6 C

(

1 +
e−γt

tβ

)

‖u‖1 , (2)
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The procedure is to look at the dynamics of νN on [0,
√
NT ], discretized on

subintervals [nT, (n+ 1)T ], n = 0, . . . , ⌊
√
N⌋.

Using the semi-martingale decomposition and the fact that the disorder is

admissible, prove recursively that, if d(µN,nT ,M) = O(N−1/2+2ζ) for some n,

then on the subinterval [nT, (n+ 1)T ], with high probability as N → ∞,

• The drift DN,t and the noise ZN,t are of order O(N−1/2+ζ)

• The nonlinearityRN is of order O(N−1+4ζ),

• νN,t is of order O(N−1/2+2ζ)

• one can define recursively qψn as the projection of µN,nT on M

qψn = Pψn(µN,nT ).

The process νn,t := µN,nt − qψn , t ∈ [0, T ] is recursively well-defined and

one has

Proposition (a priori bound on νN )

With probability going to 1 as N → ∞,

sup
1 6 n 6 ⌊

√
N⌋

sup
t∈[0,T ]

‖νn,t‖−1 6 CN−1/2+2ζ .
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The overall drift of the phase of µN induced by the dynamics on the interval

[0,
√
NT ] is given by the sum of the small drifts induced by DN that is

T

⌊
√
N⌋
∑

n=1

Pψn−1
(Dψn−1

) +O(N−1/4+2ζ ),

with high probability as N → ∞.

By rotation invariance

Pψn−1
(Dψn−1

) = N−1/2Pψn−1
(K∂θ(ξN · (sin ∗qψn−1

)qψn−1
) does not

depend on ψn−1 so that the whole drift is given by

b(ξ) := KP0∂θ(ξ · (sin ∗q)q)
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• Mean-field disordered system with rotational invariance,

• In the limit as N → ∞, the population is equally balanced : no traveling

wave in the thermodynamic limit.

• Quenched disorder induce random traveling waves for a finite population

on a time scale of order
√
N .

• And what for time of order N ?
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Thank you for your attention !

E. Luçon and C. Poquet Long time dynamics and disorder-induced traveling

waves in the stochastic Kuramoto model, arXiv :1505.00497.
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