Disorder-induced traveling waves in the quenched Kuramoto model

Eric Luçon

Université Paris Descartes

Rencontres de probabilités de Rouen sept. 18, 2015

Joint work with Christophe Poquet (Roma \rightarrow Lyon)

[Giacomin, L., Poquet, 2014]

[L., Poquet, 2015, arXiv :1505.00497]

The stochastic Kuramoto model

We consider the system of ${\cal N}$ stochastic differential equations

$$\mathrm{d}\theta_{i,t} = \omega_i \,\mathrm{d}t + \frac{K}{N} \sum_{j=1}^N \sin(\theta_{j,t} - \theta_{i,t}) \,\mathrm{d}t + \,\mathrm{d}B_{i,t}, \quad i = 1, \cdots, N,$$

- $\theta_i \in \mathbb{S} := \mathbb{R}/2\pi$ (phase oscillators),
- K > 0 : interaction intensity
- $\{B_i\}_i$: i.i.d. standard Brownian motions (thermal noise).
- $\{\omega_i\}_i$: i.i.d. $\sim \lambda$ (local frequency of the particles, random environment).

Remarks

- Invariance by rotation : if $\{\theta_j(t)\}_{j=1...N}$ is solution, so is $\{\theta_j(t) + \psi\}_{j=1...N}$, for all $\psi \in \mathbb{S}$.
- When $\omega_i \equiv 0$, the process is reversible under the invariant measure $\pi_{N,K}$ (Hamiltonian Mean-Field model, HMF or XY model)

$$\pi_{N,K}(\mathrm{d}\theta) \propto \exp\left(\frac{K}{N}\sum_{i,j=1}^{N}\cos(\theta_i - \theta_j)\right) \mathrm{d}\theta$$

The (reversible) case without disorder : $\omega_i \equiv 0$.

$$\mathrm{d}\theta_{i,t} = \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_{j,t} - \theta_{i,t}) \,\mathrm{d}t + \,\mathrm{d}B_{i,t}, \quad i = 1, \cdots, N,$$

If K is sufficiently large, the dynamics leads to the synchronization of the particles along a fixed nontrivial stationary density, at least on bounded time intervals [0, T].

The (reversible) case without disorder : $\omega_i \equiv 0$.

$$\mathrm{d}\theta_{i,t} = \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_{j,t} - \theta_{i,t}) \,\mathrm{d}t + \,\mathrm{d}B_{i,t}, \quad i = 1, \cdots, N,$$

Remark

L. Bertini, G. Giacomin, C. Poquet [$\$ PTRF 2014] have shown that, when one looks at time scale of order N, the center of synchronization performs a Brownian motion on the circle S.

Adding disorder : traveling waves

$$\mathrm{d}\theta_{i,t} = \omega_i \,\mathrm{d}t + \frac{K}{N} \sum_{j=1}^N \sin(\theta_{j,t} - \theta_{i,t}) \,\mathrm{d}t + \,\mathrm{d}B_{i,t}, \quad i = 1, \cdots, N,$$

Competition between the mean-field term (\rightarrow synchronization) and the disorder will induce traveling waves :

Set $\omega_i = \bar{\omega}$ for all i = 1, ..., N. Then, the synchronized state will rotate with speed $\bar{\omega}$.

More generally, by the change of variables

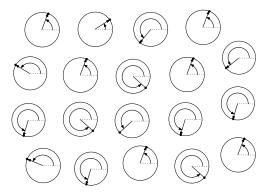
$$\theta_{i,t} \to \theta_{i,t} - \mathbb{E}_{\lambda}(\omega)t,$$

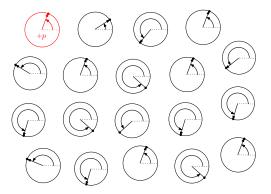
one can always assume that the law of the disorder is centered

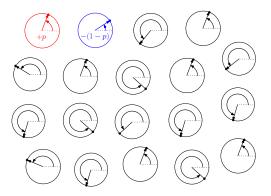
 $\mathbb{E}_{\lambda}(\omega) = 0.$

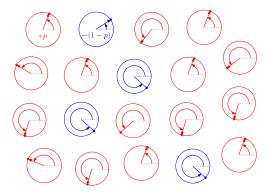
Questions

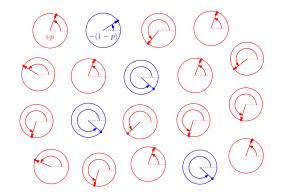
- What is the influence of the disorder on the existence of traveling waves ?
- Does it depend only on the law λ or on a typical realisation of (ω_i) ?
- On which time scale do the traveling waves appear?





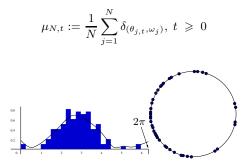






- Who wins? The majority of red rotators with low frequency or the minority of blue rotators with large frequency?
- This macroscopic asymmetry is essentially due to a law of large numbers for the disorder $(\omega_i)_i$: one should see deterministic traveling waves on bounded time intervals [0, T].

The (disordered) empirical measure of the system is given by



Large population limit on bounded time scale [0, T]

When $\mathbb{E}_{\lambda}(|\omega|) < +\infty$, a.s. w.r.t $(\omega_i)_{i \ge 1}$, μ_N converges as $N \to \infty$ in $\mathcal{C}([0,T], \mathcal{M}_1(\mathbb{S} \times \mathbb{R}))$ to $\mu_t(\mathrm{d}\theta, \mathrm{d}\omega) = p_t(\theta, \omega) \mathrm{d}\theta\lambda(\mathrm{d}\omega)$, where p_t solves the mean-field equation

$$\partial_t p_t(\theta,\omega) = \frac{1}{2} \partial_\theta^2 p_t(\theta,\omega) - \partial_\theta \left(p_t(\theta,\omega) \left(\omega - K \int \sin(\cdot) * p_t(\cdot,\tilde{\omega}) \lambda(d\tilde{\omega}) \right) \right).$$

 $p_t(\theta,\omega)$: density of rotators with phase θ and frequency ω , in the limit of an infinite population.

Eric Luçon

Quenched traveling waves in the Kuramoto model

The asymmetric case

Suppose that the support of λ is included in $[-\delta, \delta]$, for some $\delta > 0$.

Theorem (Giacomin, L., Poquet, 2014)

For every K > 1, there exist $\delta_0 = \delta_0(K) > 0$, such that for all $0 < \delta < \delta_0$, there exist $q_{\delta} \in L^2(\ell \otimes \lambda)$ and $c_{\lambda}(\delta) \in \mathbb{R}$ such that

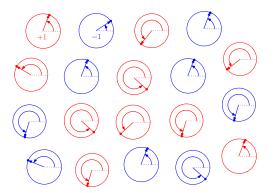
$$(t, \theta, \omega) \mapsto q_{\delta}(\theta - c_{\lambda}(\delta)t, \omega)$$

is a solution of the mean-field equation. Moreover, this family of solutions is stable by perturbation.

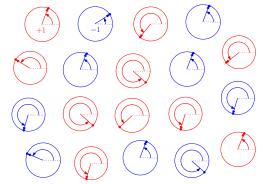
- The speed of rotation $c_{\lambda}(\delta)$ depends only on the law of the disorder λ , not on a realization of the disorder.
- If λ is symmetric, $c_{\lambda}(\delta) = 0$: the mean-field limit on [0, T] does not explain anything on the existence of traveling waves in the symmetric case.
- The proof of the theorem relies on PDE techniques and perturbation of dynamical systems in infinite dimension.

In the case $\lambda = p\delta_{-(1-p)} + (1-p)\delta_p$ with p < 1/2, $c_{\lambda}(\delta) > 0$: Red wins !

Now, the disorder $(\omega_i)_{i \ge 1}$ is chosen according to $\lambda = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_{1}$.



With disorder : the symmetric case Now, the disorder $(\omega_i)_{i \ge 1}$ is chosen according to $\lambda = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$.



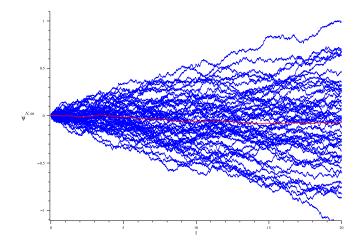
- Here, the law λ is symmetric : in the limit as $N \to \infty$, there is no asymmetry in the size of the two populations.
- But for finite (but large) population, finite-size fluctuations of the sample $(\omega_1, \ldots, \omega_N)$ leads to a microscopic asymmetry in the size of the two populations, of order \sqrt{N} .
- One expects (random) quenched traveling waves on a time scale of order \sqrt{N} .

Eric Luçon

Quenched traveling waves in the Kuramoto model

Simulation in the symmetric case

Traveling waves in the symmetric case : center of synchronization



Each trajectory corresponds to a typical sample of the disorder $(\omega_1, \ldots, \omega_N)$.

The symmetric case : first attempt

Since the traveling waves are due to the fluctuations of the disorder, one should see something at the scale of the CLT of μ_N around its limit q.

Theorem (L., 2014)

There exists H Hilbert space, such that on each bounded time interval [0, T], the fluctuation process

$$\eta_N: t \mapsto \sqrt{N}(\mu_{N,t} - q_t),$$

converges as $N \to \infty$ (in a weak sense) in C([0,T],H) to the solution $t \mapsto \eta_t$ of a linear SPDE

$$\partial_t \eta_t = L_{q_t} \eta_t + \dot{W}_t.$$

Moreover, as $t \to \infty$, there exists a nontrivial $\ell \in H$, such that

$$\frac{\eta_t}{t} \to \ell, \ \text{ as } t \to \infty.$$

An informal consequence is that the center of synchronization can be written as

$$\Psi_{N,t} \approx \Psi_t + O\left(\frac{t}{\sqrt{N}}\right)$$

But this is only formal since the limit as $N o \infty$ is not uniform in T !

Eric Luçon

Quenched traveling waves in the Kuramoto model

The symmetric case : first attempt

Since the traveling waves are due to the fluctuations of the disorder, one should see something at the scale of the CLT of μ_N around its limit q.

Theorem (L., 2014)

There exists H Hilbert space, such that on each bounded time interval [0, T], the fluctuation process

$$\eta_N: t \mapsto \sqrt{N}(\mu_{N,t} - q_t),$$

converges as $N \to \infty$ (in a weak sense) in C([0,T],H) to the solution $t \mapsto \eta_t$ of a linear SPDE

$$\partial_t \eta_t = L_{q_t} \eta_t + \dot{W}_t.$$

Moreover, as $t \to \infty$, there exists a nontrivial $\ell \in H$, such that

$$\frac{\eta_t}{t} \to \ell, \ \text{ as } t \to \infty.$$

An informal consequence is that the center of synchronization can be written as

$$\Psi_{N,t} \approx \Psi_t + O\left(\frac{t}{\sqrt{N}}\right).$$

But this is only formal since the limit as $N \to \infty$ is not uniform in T !

The symmetric case : second attempt

Suppose for simplicity that $\lambda = \frac{1}{2}(\delta_{-\omega_0} + \delta_{\omega_0})$ for some $\omega_0 > 0$. Fix $N \ge 1$ and denote N^+ and N^- the (random) number of rotators possessing the disorder $+\omega_0$ and $-\omega_0$, respectively, and denote by $(\theta_{i,t}^{\pm})_{i=1,...,N^{\pm}}$ these rotators, solutions to

$$d\theta_{j,t}^{+} = +\omega_{0} + \frac{K}{N} \left(\sum_{l=1}^{N^{+}} \sin(\theta_{l,t}^{+} - \theta_{j,t}^{+}) + \sum_{l=1}^{N^{-}} \sin(\theta_{l,t}^{-} - \theta_{j,t}^{+}) \right) dt + dB_{j,t},$$

$$d\theta_{j,t}^{-} = -\omega_{0} + \frac{K}{N} \left(\sum_{l=1}^{N^{+}} \sin(\theta_{l,t}^{+} - \theta_{j,t}^{-}) + \sum_{l=1}^{N^{-}} \sin(\theta_{l,t}^{-} - \theta_{j,t}^{-}) \right) dt + dB_{j,t},$$

The empirical measure μ_N is here identified with (μ_N^+, μ_N^-) defined by

$$\mu_{N,t}^{\pm} = \frac{1}{N^{\pm}} \sum_{j=1}^{N^{\pm}} \delta_{\theta_{j,t}^{\pm}}.$$

With this reformulation, the randomness of the disorder lies in the random sizes (N^+, N^-) of the subpopulations.

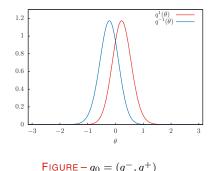
The mean-field limit is identified with (p^+, p^-) such that

$$\partial_t p_t^{\pm}(\theta) = \frac{1}{2} \partial_{\theta}^2 p_t^{\pm}(\theta) - \partial_{\theta} \left(p_t^{\pm}(\theta) \left(\pm \omega_0 - K \sin * \left(\frac{p_t^+ + p_t^-}{2} \right)(\theta) \right) \right).$$

- $q(\theta) = (\frac{1}{2\pi}, \frac{1}{2\pi})$ is always a stationary solution.
- if K > 1, there exists ω₀(K) such that for all ω₀ ≤ ω₀(K), the mean-field equation admits a unique manifold of synchronized solutions

$$M = \{q_{\psi}(\cdot), \psi \in \mathbb{S}\},\$$

where $q_{\psi}(\cdot) = q_0(\cdot - \psi)$.



Quenched traveling waves in the Kuramoto model

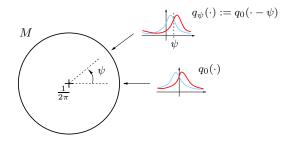
The mean-field limit is identified with (p^+, p^-) such that

$$\partial_t p_t^{\pm}(\theta) = \frac{1}{2} \partial_{\theta}^2 p_t^{\pm}(\theta) - \partial_{\theta} \left(p_t^{\pm}(\theta) \left(\pm \omega_0 - K \sin * \left(\frac{p_t^+ + p_t^-}{2} \right)(\theta) \right) \right).$$

- $q(\theta) = (\frac{1}{2\pi}, \frac{1}{2\pi})$ is always a stationary solution.
- if K > 1, there exists $\omega_0(K)$ such that for all $\omega_0 \leq \omega_0(K)$, the mean-field equation admits a unique manifold of synchronized solutions

$$M = \{q_{\psi}(\cdot), \psi \in \mathbb{S}\},\$$

where
$$q_{\psi}(\cdot) = q_0(\cdot - \psi)$$
.



Local stability of the stationary manifold M

Let $q = (q^+, q^-)$ be an element of the stationary manifold M and add a small perturbation $u_t = (u_t^+, u_t^-)$, with $\int_{\mathbb{S}} u_t^{\pm}(\theta) \, d\theta = 0$. Then one can easily show that the evolution of u_t is governed by

$$\partial_t u_t = L_q u_t + R_q(u_t),$$

where

$$L_{q}u_{t}^{\pm} = \frac{1}{2}\partial_{\theta}^{2}u_{t}^{\pm} - \partial_{\theta}\left(\pm\omega_{0}u_{t}^{\pm} - u_{t}^{\pm}K\sin*\left(\frac{q^{+} + q^{-}}{2}\right) - q^{\pm}K\sin*\left(\frac{u_{t}^{+} + u_{t}^{-}}{2}\right)\right),$$

is the linearized operator around q and R_q is quadratic. The evolution in the neighborhood of $q \in M$ is determined by the spectrum of L_q .

Definition

For $q \in M$, let H_a^{-1} be the dual of the space H_a^1 , closure of regular functions (u^+, u^-) with zero mean value on \mathbb{S} under the norm

$$\left\|u\right\|_{1,q} := \left(\frac{1}{2}\sum_{\sigma=\pm}\int_{\mathbb{S}} (\partial_{\theta}u^{\sigma}(\theta))^2 q^{\sigma}(\theta) \,\mathrm{d}\theta\right)^{\frac{1}{2}}$$

Theorem [Bertini, Giacomin, Pakdaman, 2010], [Giacomin, L., Poquet, 2014] :

For $q \in M$ and ω_0 small enough, L_q can be decomposed in H_q^{-1} as follows :

$$T_{q} : L_{q}q' = 0$$

$$N_{q} : \|e^{tL_{q}}u\|_{-1,q} \leq Ce^{-\lambda t}\|u\|_{-1,q}$$

$$M$$

Moreover, there is a well-defined projection on M adapted to $T_a \oplus M_a$ for u in a suitable neighborhood of M.

The neutral direction along T_a reflects the rotational invariance of the system. Eric Lucon

Quenched traveling waves in the Kuramoto model

sept. 18, 2015 15/23

Long-time quenched traveling waves

Definition :

A sequence of disorder $(\omega_i)_{i \ge 1}$ is said to be *admissible* if for all $\zeta > 0$, there exists N_0 such that for all $N \ge N_0$ such that $\max(|\xi_N^+|, |\xi_N^-|) \le N^{\zeta}$, where

$$\xi_N^{\pm} := N^{1/2} \left(\frac{N^{\pm}}{N} - \frac{1}{2} \right).$$

Theorem [L., Poquet (2015)] :

Fix a constant τ_f and a phase $\psi_0 \in \mathbb{S}$ and an *admissible* sequence $(\omega_i)_{i \ge 1}$. If for all $\varepsilon > 0$

$$\lim_{N \to \infty} \mathbf{P} \left(\left\| \mu_{N,0} - q_{\psi_0} \right\|_{-1} \le \varepsilon \right) = 1 \,,$$

then

$$\lim_{N\to\infty} \mathbf{P}\left(\sup_{\tau\in[0,\tau_f]} \left\| \mu_{N,N^{1/2}\tau} - q_{\psi_0+b(\xi_N)\tau} \right\|_{-1} \leq \varepsilon \right) \, = \, 1 \, ,$$

where b is linear and satisfies for all ξ such that $\xi^++\xi^-=0$

$$b(\xi) = 2\xi^+ \omega_0 + O(\omega_0^2), \text{ as } \omega_0 \to 0.$$

Quenched traveling waves in the Kuramoto model

We want to quantify how close the empirical measure of the system μ_N is close to the manifold M. Introduce

 $\nu_{N,t} := \mu_{N,t} - q_{\psi},$

where q_{ψ} is any element of M. Using Ito formula and introducing the semi-group $e^{tL_{q_{\psi}}}$, one can write a mild formulation in H^{-1} of ν_N :

$$\nu_{N,t} = e^{tL_{q_{\psi}}} \nu_{N,0} + \int_{0}^{t} e^{(t-s)L_{q_{\psi}}} \left(D_{q,N} + R_{q,N}(\nu_{N,s}) \right) \, \mathrm{d}s + Z_{N,t},$$

where

- $D_{q,N} = \partial_{\theta} \left(q_{\psi} \left\{ \left(\frac{N^+}{N} \frac{1}{2} \right) (K \sin * q_{\psi}^+) + \left(\frac{N^-}{N} \frac{1}{2} \right) (K \sin * q_{\psi}^-) \right\} \right)$ is the drift part induced by the asymmetry of the disorder,
- $R_{q,N}(\nu_N)$ is a quadratic nonlinearity,
- Z_{N,t} is the noise part.

$$\nu_{N,t} = e^{tL_{q_{\psi}}} \nu_{N,0} + \int_{0}^{t} e^{(t-s)L_{q_{\psi}}} \left(D_{q,N} + R_{q,N}(\nu_{N,s}) \right) \, \mathrm{d}s + Z_{N,t}.$$

We have a competition between two effects :

- the random influence of the drift D_N and noise Z_N that moves away μ_N from M
- the deterministic semigroup e^{tL_q} that projects back μ_N along the normal direction N_q ,
- the dynamics of μ_N is essentially along the neutral direction T_q : we obtain a traveling wave whose speed depends only on the drift D_N
- Since D_N is a linear functional of $\left(\frac{N^+}{N} \frac{1}{2}\right)$, it is of order $\approx \frac{1}{\sqrt{N}}$, so one has to wait a time of order \sqrt{N} in order to see this traveling wave.

Control of the noise

The noise term is, for all test fonction h

$$Z_{N,t}(h) = \sum_{\sigma=\pm} \frac{1}{2N^{\sigma}} \sum_{j=1}^{N^{\sigma}} \int_{0}^{t} \partial_{\theta} \left[\left(e^{(t-s)L_{\psi}^{*}} h \right)^{\sigma} \right] \left(\theta_{j}^{\sigma}(s) \right) \mathrm{d}B_{j}(s) \,,$$

Proposition

For all $\varepsilon > 0$ and m > 0, there exists $C_{m,\varepsilon} > 0$ such that for all $0 \leq s < t \leq T$,

$$\mathbf{E} \| Z_{N,t} - Z_{N,s} \|_{-1}^{2m} \leqslant \frac{C_{m,\varepsilon}}{N^m} \left((t-s)^{m(1/2-2\varepsilon)} + (t-s)^m \right) \,. \tag{1}$$

This requires to know that the semigroup e^{tL_q} is somehow regularizing : one has fractional estimates of the type

$$\left\|e^{tL_q^*}u\right\|_{1+2\beta} \leqslant C\left(1+\frac{e^{-\gamma t}}{t^{\beta}}\right)\|u\|_1,$$
(2)

The procedure is to look at the dynamics of ν_N on $[0, \sqrt{NT}]$, discretized on subintervals [nT, (n+1)T], $n = 0, \ldots, \lfloor \sqrt{N} \rfloor$.

Using the semi-martingale decomposition and the fact that the disorder is admissible, prove recursively that, if $d(\mu_{N,nT}, M) = O(N^{-1/2+2\zeta})$ for some n, then on the subinterval [nT, (n+1)T], with high probability as $N \to \infty$,

- The drift $D_{N,t}$ and the noise $Z_{N,t}$ are of order $O(N^{-1/2+\zeta})$
- The nonlinearity R_N is of order $O(N^{-1+4\zeta})$,
- $\nu_{N,t}$ is of order $O(N^{-1/2+2\zeta})$
- one can define recursively q_{ψ_n} as the projection of $\mu_{N,nT}$ on M

$$q_{\psi_n} = P_{\psi_n}(\mu_{N,nT}).$$

The process $\nu_{n,t}:=\mu_{N,nt}-q_{\psi_n}, t\in[0,T]$ is recursively well-defined and one has

Proposition (a priori bound on ν_N)

With probability going to 1 as $N \to \infty$,

$$\sup_{1 \leqslant n \leqslant \lfloor \sqrt{N} \rfloor} \sup_{t \in [0,T]} \left\| \nu_{n,t} \right\|_{-1} \leqslant C N^{-1/2 + 2\zeta}$$

The overall drift of the phase of μ_N induced by the dynamics on the interval $[0, \sqrt{N}T]$ is given by the sum of the small drifts induced by D_N that is

$$T\sum_{n=1}^{\lfloor\sqrt{N}\rfloor} P_{\psi_{n-1}}(D_{\psi_{n-1}}) + O(N^{-1/4+2\zeta}),$$

with high probability as $N \to \infty$.

By rotation invariance

 $P_{\psi_{n-1}}(D_{\psi_{n-1}}) = N^{-1/2} P_{\psi_{n-1}}(K \partial_{\theta}(\xi_N \cdot (\sin * q_{\psi_{n-1}})q_{\psi_{n-1}}))$ does not depend on ψ_{n-1} so that the whole drift is given by

 $b(\xi) := KP_0 \partial_\theta(\xi \cdot (\sin *q)q)$

- · Mean-field disordered system with rotational invariance,
- In the limit as N → ∞, the population is equally balanced : no traveling wave in the thermodynamic limit.
- Quenched disorder induce random traveling waves for a finite population on a time scale of order \sqrt{N} .
- And what for time of order N?

Thank you for your attention!

E. Luçon and C. Poquet *Long time dynamics and disorder-induced traveling waves in the stochastic Kuramoto model*, arXiv :1505.00497.