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A stochastic model of metastatic proliferation
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Plan:

• The deterministic results
• The stochastic model
• The reduced equations



2/16

JJ
II
J
I

Back

Close

The deterministic results
K.Iwata, K.Kawasaki and N.Shigesada [IKS] model for the growth

and spread of secondary tumors (metastases):

• the primary tumor, of size xp (the cell number, being very large,
is considered as a continuous variable), grows with a Gom-
pertzian deterministic law ẋp = g(xp) and g(x) := ax log(N/x)
here a > 0, 0 << N (i.e. N is “macroscopic”, e.g. 1011).
• meanwhile, it produces one-cell metastases with a size-dependent

rate β(xp) = mxαp , with parameters m > 0 and α ∈ (0, 1]: α is
related to the connection between tumor and blood circulation
(angiogenesis), vascularization is on the surface ⇒ α ' 2/3.
• the new metastases grow with the same law and produce other

metastases with the same mechanism.
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The evolution (von Forster) equation for the size distribution, in the
continuum approximation:

∂ρ(x, t)

∂t
+
∂(g(x)ρ(x, t))

∂x
= 0, x > 1 (1.1)

g(1)ρ(1, t) =

∫ ∞

1

β(x)ρ(x, t)dx + β(xp(t)); ρ(x, 0) = 0 (1.2)

Remark: xp(t) = N (1−exp(−at)) solves the Gompertz equation with
xp(0) = 1.

Accurate analysis in more recent papers by two french groups [DGL,
BBHV].

The main point is the evaluation of the malthusian rate associated
to the asymptotic exponential growth of the metastatic population.
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The stochastic model
First step: modelling growth of a single tumour.

• It is a BD (birth-death) process (equivalently, a random walk
on the space of sizes Z+ = {0, 1, 2, ...}), with suitable rates.
• In the initial segment [1, N ], its size tends to increase (B > D),

while beyond N , the size tends to decrease (D > B).
• 0 is a.s. absorbing.

Remark: the stochastic model of a single tumor has a behavior not so
different from the deterministic one; if the tumor reaches a macroscopic
size the mean time to extinction becomes extremely long. What is
actually observed in the long run, if no extinction occurred, is the
quasi-stationary state, i.e. the distribution of sizes, conditioned to not
being absorbed, see the recent review on quasi-stationary distributions
[vDP]
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Proposed rates:

• birth rate, λn = an log(N + 1), n ∈ Z+

• death rate µn = an log(n + 1), n ∈ Z+.

Remark: N is a large bounding size, the drift λn−µn is positive from
1 to N − 1, zero on N and negative after N , such that asymptotically
reproduces the deterministic, Gompertzian law.
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For general positive rates of a birth-death process, we consider the
potential coefficients πn, n ∈ N, i.e. on the set of transient states
N = {1, 2, ..}

π1 = 1, πn =
λ1λ2...λn−1
µ2µ3...µn

, n = 2, 3, .. (2.1)

and suppose that the following conditions are fulfilled:
∞∑
n=1

(
1

λnπn
) =∞ i.e. non-explosion

and ∞∑
n=1

(
1

λnπn

n∑
i=1

πi) =∞

These conditions (fulfilled in our case) imply that absorption in 0 is
certain. The transition probabilities

Pi,j(t) = P{X(t) = j|X(0) = i}
are the unique solution of the Kolmogorov Backward and Forward
Equation (KBE, KFE) systems.
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These equations can be compactly formulated by introducing the
generator Q of the process: Q is a tridiagonal matrix such that

Qi,i = −(λi + µi), i = 0, 1, .., Qi,i−1 = µi, i = 1, 2, ..;

Qi,i+1 = λi, i = 0, 1, ..; Qi,k = 0 otherwise

Let P (t) denote the transition probability matrix, we shortly write the
two Kolmogorov equations:

Ṗ = QP, (KBE)

Ṗ = PQ, (KFE)

Remark: as absorption in 0 is certain, the stationary distribution of
the process is just δ0.
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We moreover have that a positive decay parameter Λ+, Λ+ :=
limt→∞ 1/t| logPij(t)|, i, j ∈ N exists; this comes from the asymptotic
behavior of the πj for large j, which allows the following result for the
quantity Rn := (

∑n
j=1

1
µjπj

)(
∑∞

j=n πj) see [SZP]:

sup
n≥1

Rn := R <∞ (2.2)

This implies that the decay parameter is positive, as (4R)−1 ≤ Λ+ ≤
R−1.
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The reduced equations
Model proliferation i.e. the appearance of secondary tumours at

small, unit size: it is represented by a given rate of creation of “parti-
cles” in the site 1, through a linear functional of the system configura-
tion.

Remark: at the initial stage of growth (size =1!) extinction happens
with “reasonable” mean times; this is not present in the deterministic
model, hence different results are expected.

The proliferation process is represented in the configuration space
S = {η : (η1, .., ηn, ..), ηn = #metastases of size n, n = 1, 2, ..}, in
the following way: the population on the site 1 (i.e. the number of
tumours of size one) increases with a rate C(η) (the colonization rate)
which depends linearly on the current configuration C(η) =

∑
βnηn.
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We just analyze the evolution of the expected values.
Let the expected occupation numbers be ρk(t) = 〈ηk(t)〉, k =

1, 2, .... The initial measure is concentrated on the configuration with
just one particle in the site 1, i.e. just one (ancestor) cell.

and let e1 denote the unit vector on the site 1.
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By linearity we get the following system for the vector ρ(t), with
C(ρ) = 〈C(η)〉:

ρ̇ = ρQ + C(ρ)e1
ρ0 = e1

(3.1)

Let c(t) ≡ C(ρ) =
∑
βnρn(t), and write the associated componentwise

integral equation

ρk(t) = P1,k(t) +

∫ t

0

c(s)P1,k(t− s)ds (3.2)

Multiplying by βk and sum over k, a Volterra integral equation for
the colonization rate c(t) is got:

c(t) = γ(t) +

∫ t

0

c(s)γ(t− s)ds (3.3)

where γ(t) ≡
∑

k βkP1,k(t) = E(βX(t)).
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Key estimates:

• for the transition probabilities

P1,k ≤Mk exp(−Λ+t) (3.4)

• similar for γ(t),

The following integral plays a key role:∫∞
0 γ(t)dt = γ̂(0), where f̂ denotes Laplace transform of f .

If γ̂(0) < 1, c(t) decays exponentially, while exponential growth
comes out if γ̂(0) > 1; c(t) goes to a constant if γ̂(0) = 1. Some
properties of the solution c(t) propagate to the distribution function
ρ(t), as the inhomogenous term P1,k(t) is decaying to zero and the
integral term is a convolution between γ and P1,k(t).
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Final observations on possible actions on the parameters in order to
get the desired, decaying behavior.

Formula giving the relevant integral
∫∞
0 γ(t)dt in terms of the rates:∫ ∞

0

γ(t)dt = E(

∫ τ

0

βX(t)) =
1

µ1

∞∑
k=1

βkH(k) (3.5)

where H(1) = 1, H(k) = λ1..λk−1

µ2..µk
, see [SW].

This formula allows to evaluate the role of different parameters in
order to decrease the value of the integral below 1, in particular by
suitable decreasing the birth rates in a initial segment.
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Forthcoming work (with K.Ravishankar) will focus on the full many-
particle system, where the absorption competes with proliferation; it
may be interesting to investigate the condition for the existence of a
stationary distribution on the transient set. A resemblance with the
Fleming-Viot system may be noted, see [FM].
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