A stochastic model of metastatic proliferation
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The deterministic results

K.Iwata, K. Kawasaki and N.Shigesada [IKS] model for the growth
and spread of secondary tumors (metastases):

e the primary tumor, of size x,, (the cell number, being very large,
is considered as a continuous variable), grows with a Gom-
pertzian deterministic law &, = g(z,) and g(x) = axlog(N/z)
here a > 0, 0 << N (i.e. N is “macroscopic”, e.g. 10').

e mecanwhile, it produces one-cell metastases with a size-dependent
rate 3(x,) = ma;, with parameters m > 0 and a € (0, 1]: v is
related to the connection between tumor and blood circulation
(angiogenesis), vascularization is on the surface = a ~ 2/3.

e the new metastases grow with the same law and produce other
metastases with the same mechanism.




The evolution (von Forster) equation for the size distribution, in the
continuum approximation:

Op(x,t) , Og(x)p(x,t))
ot ox

sWp(L1) = [ Bllple 0 + 8,0 pla0)=0 (12

—0,z>1 (1.1)

Remark: x,(t) = NU-P(=at) golves the Gompertz equation with
z,(0) = 1.

Accurate analysis in more recent papers by two french groups [DGL,
BBHV].

The main point is the evaluation of the malthusian rate associated
to the asymptotic exponential growth of the metastatic population.




The stochastic model

First step: modelling growth of a single tumour.

e [t is a BD (birth-death) process (equivalently, a random walk
on the space of sizes Z, = {0,1,2,...}), with suitable rates.

e In the initial segment [1, V], its size tends to increase (B > D),
while beyond N | the size tends to decrease (D > B).

e 0 is a.s. absorbing.

Remark: the stochastic model of a single tumor has a behavior not so
different from the deterministic one; if the tumor reaches a macroscopic
size the mean time to extinction becomes extremely long. What is
actually observed in the long run, if no extinction occurred, is the
quasi-stationary state, i.e. the distribution of sizes, conditioned to not
being absorbed, see the recent review on quasi-stationary distributions

[vDP]




Proposed rates:
e birth rate, A, = anlog(N + 1), n € Z,
e death rate u, = anlog(n+1), n € Z,.
Remark: N is a large bounding size, the drift A\, — u,, is positive from
1 to N —1, zero on N and negative after NV, such that asymptotically
reproduces the deterministic, Gompertzian law.




For general positive rates of a birth-death process, we consider the
potential coefficients m,, n € N, i.e. on the set of transient states
N={1,2.}
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and suppose that the following conditions are fulfilled:
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n=1

n=23,. (2.1)

m=1m =

) = o0 i.e. non-explosion
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and

These conditions (fulfilled in our case) imply that absorption in 0 is
certain. The transition probabilities

Bijt) = P{X(t) = j|X(0) = i}

are the unique solution of the Kolmogorov Backward and Forward
Equation (KBE, KFE) systems.




These equations can be compactly formulated by introducing the
generator () of the process: () is a tridiagonal matrix such that

Qii=—N+w),1=0,1,., Qi1 =p,1=1,2,.;
Qiiv1 = Ni, 1 =0,1,..; Qix = 0 otherwise

Let P(t) denote the transition probability matrix, we shortly write the
two Kolmogorov equations:

P =QP, (KBE)
P = PQ, (KFE)

Remark: as absorption in 0 is certain, the stationary distribution of
the process is just dy.




We moreover have that a positive decay parameter A, A, =
limy o 1/t]log P;;(t)|,7,j € N exists; this comes from the asymptotic
behavior of the 7; for large j, which allows the following result for the
quantity R, = (37} —=)(>_72,, 7;) see [SZP]:

J=1 g
sup R, .= R < o0 (2.2)
n>1

This implies that the decay parameter is positive, as (4R) ™' < A, <
R




The reduced equations

Model proliferation i.e. the appearance of secondary tumours at
small, unit size: it is represented by a given rate of creation of “parti-
cles” in the site 1, through a linear functional of the system configura-
tion.

Remark: at the initial stage of growth (size =1!) extinction happens
with “reasonable” mean times; this is not present in the deterministic
model, hence different results are expected.

The proliferation process is represented in the configuration space
S =A{n: (M, M, -.),Nn = Fmetastases of size n,n = 1,2,..}, in
the following way: the population on the site 1 (i.e. the number of
tumours of size one) increases with a rate C'(n) (the colonization rate)
which depends linearly on the current configuration C'(n) = >_ 5,1,




We just analyze the evolution of the expected values.

Let the expected occupation numbers be pp(t) = (ni(t)), k =
1,2, .... The initial measure is concentrated on the configuration with
just one particle in the site 1, i.e. just one (ancestor) cell.

and let e; denote the unit vector on the site 1.




By linearity we get the following system for the vector p(t), with
Clp) = (Cn)):

0 (3.1)

Let c(t) = C(p) = > Bupn(t), and write the associated componentwise
integral equation

pul(t) = Pra(t) + /0 () Puslt — 5)ds (32)

Multiplying by £, and sum over k, a Volterra integral equation for
the colonization rate ¢(t) is got:

o(t) = () + /0 ()t — s)ds (3.3)

where (t) = >, BrPix(t) = E(Bx ).




Key estimates:
e for the transition probabilities

Pl,k S Mk exp(—/\yf) (34)

e similar for (),

The following integral plays a key role:

[ 4(t)dt = #(0), where f denotes Laplace transform of f.

If 4(0) < 1, ¢(t) decays exponentially, while exponential growth
comes out if 4(0) > 1; ¢(t) goes to a constant if 4(0) = 1. Some
properties of the solution ¢(t) propagate to the distribution function
p(t), as the inhomogenous term P ;(t) is decaying to zero and the
integral term is a convolution between vy and Py (t).




Final observations on possible actions on the parameters in order to
get the desired, decaying behavior.
Formula giving the relevant integral [~ ~(¢)dt in terms of the rates:

/ / By) = =3 BH (k) (3.5)

S
where H(1) =1, H(k) = %, see [SWI.
This formula allows to evaluate the role of different parameters in

order to decrease the value of the integral below 1, in particular by
suitable decreasing the birth rates in a initial segment.




Forthcoming work (with K.Ravishankar) will focus on the full many-
particle system, where the absorption competes with proliferation; it
may be interesting to investigate the condition for the existence of a
stationary distribution on the transient set. A resemblance with the
Fleming-Viot system may be noted, see [FM].




References

[BBHV| D.Barbolosi, A. Benabdallah, F. Hubert, F.Verga (2009),
Mathematical and numerical analysis for a model of growing metastatic

tumors, Math. Biosciences, 218, 1-14.

IDGL] A.Devys, T.Goudon, P.Lafitte (2009), A model describing
the growth and the size distribution of multiple metastatic tumours,
Discrete Contin. Dyn. Syst. Ser. B, 12, 731-767.

[FM] P.A.Ferrari, N. Maric (2007), Quasi stationary distributions
and Fleming-Viot processes in countable spaces, Electron. J. Probab.,
12, 684702.

[IKS] K.Iwata, K.Kawasaki N.Shigesada (2000), A Dynamical Model
for the growth and size distribution of multiple metastatic tumors.
J.Theor. Biol. 203, 177-186.

[SW]| V.T. Stefanov, Song Wang (2000), A note on integrals for
birth-death processes, Math. Biosciences, 168, 161-165.




[SZP] D. Sirl, H. Zhang, P. Pollett (2007), Computable bounds for
the decay parameter of a birth-death process. J. Appl. Probab., 44,
476-491.

[vDP] E.van Doorn, P.Pollett (2013) Quasi-stationary distributions
for discrete-state models, Eur.J. Oper. Res., 230, 1-14.




	The deterministic results
	The stochastic model
	The reduced equations

