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Context
I Let (Ω,F , µ) be a probability space and let T : Ω→ Ω be a bijective

bi-measurable measure-preserving function.

I Let f : Ω→ R. The sequence
(
f ◦ T j)

j>0 is a strictly stationary
sequence, that is, the sequences

(
f ◦ T j)

j>0 and
(
f ◦ T j+1)

j>0 have
the same distribution.

I We define SN(f ) :=
∑N−1

j=0 f ◦ T j . In probability theory, an
important problem is the understanding of the asymptotic behaviour
of the sequence (SN(f ))N>1.

•0 •
Sn(f )

•
Sn+1(f )

f ◦ T n

f ◦ T n+1

Sn+2(f )
•

Figure: Illustration of Sn(f )
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Partial sum process
Let f : Ω→ R. The random function Spl

n (f , ·) is defined by

Spl
n (f , t) =

{
Sk(f ) if t = k/n, 0 6 k 6 n;

linear interpolation if t ∈ (k/n, (k + 1)/n) .

Figure: The function u 7→ Spl
n (f , u) for n = 8

•0 1

Spl
n (f , u)

u
S1(f )
•

S2(f )•

S3(f )•

S4(f )•

S5(f )•

S6(f )•

S7(f )• S8(f )
•
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The invariance principle

We investigate the weak convergence of the sequence Spl
n (f , ·) in some

functional spaces.
I Let C [0, 1] denote the space of continuous functions on the unit

interval endowed with the uniform norm. The random function
t 7→ Spl

n (f , t) belongs to this space.

I Donsker (1952) showed that if
(
f ◦ T j)

j>0 is independent, centered
and E

[
f 2] = σ2, then for each F : C [0, 1]→ R continuous and

bounded,

lim
n→+∞

E
[
F
(
n−1/2Spl

n (f , ·)
)]

= E [F (σW )] ,

where W a standard Brownian motion. When this convergence
holds, we say that f satisfies the invariance principle in C [0, 1] or f
satisfies the functional central limit theorem (FCLT) in C [0, 1].
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Hölder spaces
In view of statistical applications, one may try to prove the convergence

F
(
Spl

n (f , ·)/
√
n
)
→ F (W ) (CF)

for the largest possible class of functionals F .

Space Definition Separable
Hα[0, 1] ‖x‖α := sups 6=t

|x(s)−x(t)|
|s−t|α + |x(0)| < +∞ No

Ho
α[0, 1] lim

δ→0
sup
{
|x(t)− x(s)|
|t − s|α : |t − s| < δ, s, t ∈ [0, 1]

}
= 0 Yes

The paths of a standard Brownian motion belong to Hα[0, 1] for each
α ∈ (0, 1/2).

Thus we may try to prove the convergence (CF) for functionals which are
continuous on Hölder spaces (approach followed by Lamperti).

It has potential statistical applications like change point detection.
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The i.i.d. case
Let α ∈ (0, 1/2) and p(α) := (1/2− α)−1 ∈ (2,+∞).

Lamperti (1962) showed that if (f ◦T j)j>0 is i.i.d., centered and for each t,
c1 6 tp(α)µ {|f | > t} 6 c2, then the sequence (n−1/2Spl

n (f ))n>1 is not
tight in Hα[0, 1].

Theorem (Račkauskas, Suquet, 2003)
Let α ∈ (0, 1/2) and let

(
f ◦ T j)

j>0 be an i.i.d. centered sequence with
unit variance. Then the following conditions are equivalent:
1. limt→∞ tp(α)µ {|f | > t} = 0;

2. the sequence (n−1/2Spl
n (f ))n>1 converges to a standard Brownian

motion in the space Ho
α[0, 1].

Question
What about strictly stationary non-independent sequences?
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General strategy

I The finite dimensional distributions characterize probability measures
on Ho

α.

I The convergence of the finite dimensional distributions will always
hold under our assumptions.

I Therefore, the main difficulty is to establish tightness of the
sequence

(
n−1/2Spl

n (f )
)

n>1 in Ho
α.

I Quantities like

µ

{
sup

16i<j6n

|Sj(f )− Si (f )|
(j − i)α > t

}
are not easy to handle compared with µ {|Sn(f )| > t}.

10 / 28



An equivalent norm

Define for j > 1, x : [0, 1]→ R and t ∈
[
2−j , 1− 2−j],

λj(t, x) := x(t)−
x
(
t + 2−j)+ x

(
t − 2−j)

2 .

The sequential norm is defined by

‖x‖seq
α := max

{
|x(0)| , |x(1)| , sup

j>1
2jα max

06k<2j−1

∣∣λj((2k + 1)2−j , x)
∣∣} ,

and is equivalent to ‖·‖α (Ciesielski, 1960).
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A tightness criterion

Following Suquet (1999), we obtain that a sequence of processes (ξn(·))n>1
such that ξn(0) = 0 for each n is tight in Ho

α if and only if for each
positive ε,

lim
J→+∞

lim sup
n→+∞

µ

{
sup
j>J

2jα max
06k<2j−1

∣∣λj((2k + 1)2−j , ξn)
∣∣ > ε

}
= 0.

When ξn(t) := n−1/2Spl
n (f , t), we have the following sufficient condition

for tightness in Ho
α: for each positive ε,

lim
J→+∞

lim sup
n→+∞

log2 n∑
j=J

2jµ

{
max

16i6n2−j
|Si (f )| > εn1/22−αj

}
= 0.
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Definition of martingales

Definition
LetM be a sub-σ-algebra of F such that TM⊂M (in this way,
(T−iM)i>0 is a filtration). We say that

(
m ◦ T j)

j>0 is a martingale
differences sequence if the function m isM-measurable, integrable and
E [m | TM] = 0.

In this way, the sequence (Sn(m))n>1 is a martingale with respect to the
filtration (T−iM)i>0.

The invariance principle in C [0, 1] and the law of the iterated logarithms
hold for square integrable martingale differences sequences.

If
(
m ◦ T j)

j>0 is a martingale differences sequence such that m ∈ Lp,
then the sequence (E |Sn(m)|p /np/2)n>1 is bounded.

14 / 28



Moment inequalities do not suffice

Theorem (G., 2016)
Let α ∈ (0, 1/2), p(α) := (1/2− α)−1. There exists a strictly stationary
sequence (f ◦ T j)j>0 such that
• the finite dimensional distributions of (Spl

n (f )/
√
n)n>1 converge to

those of a standard Brownian motion,

• the sequence (E |Sn(f )|p(α)
/np(α)/2)n>1 is bounded and

• the process (Spl
n (f )/

√
n)n>1 is not tight in Hα[0, 1].
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The tail condition does not suffice

Let α ∈ (0, 1/2), p(α) := (1/2− α)−1.

Theorem (G., 2016)
Let (Ω,F , µ,T ) be a dynamical system with positive entropy. There
exists a function m : Ω→ R and a σ-algebraM for which TM⊂M
such that

• the sequence (m ◦ T i )i>0 is a martingale difference sequence with
respect to the filtration (T−iM)i>0;

• the convergence limt→+∞ tp(α)µ {|m| > t} = 0 takes place;

• the sequence (n−1/2Spl
n (m))n>1 is not tight in Ho

α[0, 1].
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Sufficient condition for martingales

LetM a sub-σ-algebra of F such that TM⊂M. Let α ∈ (0, 1/2),
p(α) := (1/2− α)−1.

Theorem (G., 2016)
Let

(
m ◦ T j ,T−jM

)
j>0 be a strictly stationary martingale difference

sequence. Assume that tp(α)µ {|m| > t} → 0 and
E[m2 | TM] ∈ Lp(α)/2. Then

n−1/2Spl
n (m)→ η ·W in distribution in Ho

α[0, 1], (HIP)

where η is independent of the Brownian motion W and
η = lim

n→+∞
L1

n−1/2 (E [Sn(m)2 | I
])1/2.

In particular, (HIP) takes place if m belongs to Lp(α).
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How to check the tightness criterion? (1)

We use a deviation inequality.

Theorem (Nagaev, 2003)
Let q > 0 and let (Sn,Fn) be a martingale. Then

µ

{
max

16k6n
Sk > t

}
6 C(q)

∫ 1

0
Q (tu) uq−1du,

where
X1 = S1, Xk := Sk − Sk−1, k > 1 and

Q(u) := µ

{
max

16k6n
|Xk | > u

}
+ µ


( n∑

k=1
E
[
X 2

k | Fk−1
])1/2

> u

 .
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How to check the tightness criterion? (2)

If
(
m ◦ T i)

i>0 is a martingale differences sequence with respect to
(T−iM)i>0, then

µ

{
1√
n

max
16i6n

|Si (m)| > t
}

6 C(q)n
∫ 1

0
µ
{
|m| > tu

√
n
}
uq−1du+

+ C(q)
∫ +∞

0
µ
{
E
[
m2 | TM

]
> u2t2}min

{
u, uq−1} du.
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To sum up

Let α ∈ (0, 1/2), p(α) := (1/2− α)−1.

Dependence
of

(f ◦ T i )i>0 Integrability
Does f satisfy the
HIP?

Independent
For each t, 0 < c1 6
tp(α)µ {|f | > t} 6 c2 No (Lamperti, 1962)

Independent tp(α)µ {|f | > t} → 0
Yes (Račkauskas,
Suquet, 2003)

Martingale
differences tp(α)µ {|f | > t} → 0

Not necessarily (G.,
2016)

Martingale
differences

tp(α)µ {|f | > t} → 0 and
E
[
f 2 | TM

]
∈ Lp(α)/2 Yes (G., 2016)
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Martingale-coboundary decomposition

Definition
We say that a function f admits a martingale-coboundary decomposition
in Lq if the equality

f = m + g − g ◦ T

holds, where
(
m ◦ T j)

j>0 is a martingale differences sequence such that
m ∈ Lq and g belongs to Lq.

Proposition (G., 2015)
Assume that f admits a martingale-coboundary decomposition in Lp(α).
Then

n−1/2Spl
n (f )→ η ·W in distribution in Hα[0, 1],

where η is independent of the Brownian motion W .

21 / 28



Martingale approximation
Theorem (G., 2016)
LetM be a sub-σ-algebra of F such that TM⊂M.
Let f be a centeredM-measurable random variable, α ∈ (0, 1/2) and
p(α) := (1/2− α)−1. Assume that f satisfies one of the following
conditions

I Hannan type condition:∑
i>0

∥∥E [f | T iM
]
− E

[
f | T i+1M

]∥∥
p(α) < +∞

I Maxwell and Woodroofe type condition:∑
n>1

1
n3/2 ‖E [Sn(f ) | M]‖p(α) < +∞.

Then
n−1/2Spl

n (f )→ η ·W in distribution in Hα[0, 1],

where η is independent of the Brownian motion W .
22 / 28



Ideas of proofs (1)

We do not use deviation inequalities.
For Hannan’s condition: we use the inequality

E
∥∥∥∥ 1√

n
Spl

n
(
E
[
f | T iM

]
− E

[
f | T i+1M

])∥∥∥∥
α

6 C(α)
∥∥E [f | T iM

]
− E

[
f | T i+1M

]∥∥
p(α)

and the fact that for each R,
∑R

i=0 E
[
f | T iM

]
−E

[
f | T i+1M

]
admits

a martingale-coboundary decomposition in Lp(α).
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Ideas of proofs (2)

For Maxwell and Woodroofe condition: we have the inequality

E
∥∥∥∥ 1√

n
Spl

n (h)
∥∥∥∥
α

6 C(α)
+∞∑
j=0

2−j/2 ‖E [S2j (h) | M]‖p(α)

=: ‖h‖MW(p(α)) .

On the space

MW(p(α)) :=
{
h ∈ L2(M) | ‖h‖MW(p(α)) < +∞

}
,

the operator V : h 7→ E [Uh | M] is mean ergodic (that is,∥∥∑n
i=0 V ih

∥∥
MW(p(α)) /n→ 0) and has no non trivial fixed points.

Therefore,
(I − V )MW(p(α))

MW(p(α))
= MW(p(α)).
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Ideas of proofs (3)

Each element of (I − V )MW(p(α)) admits a martingale coboundary
decomposition, since

(I − V )h = h − E [h | TM] + (I − U)E [h | TM] .

We then derive tightness of
(
n−1/2Spl

n (f )
)

n>1 in Hα via an
approximation of f by an element of (I − V )MW(p(α)).
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Motivation and definition

Assume that f is such that supt>0 tp(α)µ {|f | > t} ∈ (0,+∞). We
cannot expect the invariance principle in Hα[0, 1], even in the i.i.d. case
(but it takes place in Hβ[0, 1] for each β < α)).

We define
ωρ(x , δ) := sup

0<t−s<δ

|x(t)− x(s)|
ρ(t − s) ,

where ρ(u) := uαL(1/u), 0 6 α 6 1/2 and L is slowly varying (e.g.
ρ(u) = u1/2 log(c/u)β , β > 1/2). We also define

Ho
ρ := {x : [0, 1]→ R | ωρ(x , δ)→ 0} .

A necessary and sufficient condition for the invariance principle in Ho
ρ is

(cf. Račkauskas and Suquet, 2004)

∀δ > 0, lim
t→+∞

t · µ
{
|f | > δ

√
tρ(1/t)

}
= 0.
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Results for martingales, α < 1/2

Theorem (G., 2016)
Let ρ(u) := uα log(c/u)β , where α ∈ (0, 1/2). If

(
m ◦ T j)

j>0 is a
martingale differences sequence such that

lim
t→+∞

t · µ
{
|m| > t1/2−α(log t)β

}
= 0 and

E
[(
E
[
m2 | TM

])p(α)/2 (log (1 + E
[
m2 | TM

]))β/2]
< +∞,

then
n−1/2Spl

n (m)→ η ·W in distribution in Hρ[0, 1].
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Results for martingales, α = 1/2

Theorem (G., 2016)
Let ρ(u) := u1/2 log(c/u)β , where β > 1/2. If

(
m ◦ T j)

j>0 is a
martingale differences sequence such that

∀δ > 0, E
[
exp

(
δ |m|1/(β−1/2)

)]
< +∞.

then
n−1/2Spl

n (m)→ η ·W in distribution in Hρ[0, 1].

This is more restrictive than the condition in the i.i.d. case, which is

∀δ > 0, E
[
exp

(
δ |m|1/β

)]
< +∞.
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