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• I started working with Enza in 2008 : we discussed, together with
Antonio Galves, about the perfect simulation of infinite range Gibbs
measures. Main technical ingredient : Kalikow-type decomposition.
⇒ Perfect simulation of infinite range Gibbs measures and
coupling with their finite range approximations, JSP 2010.

Followed : Lot of visits of Enza to Paris and of me to Rome....

• Continued in : Kalikow-type decomposition for multicolor infinite
range particle systems. AAP 2013 (with N. Garcia, A. Galves)

• What I am going to talk about today : Neighborhood radius
estimation in Variable-neighborhood random fields (VNRF) SPA,
2011.
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What are VNRF ? ? ?

Observe a random field µ on Zd where

every site : i ∈ Zd

might have a finite number of colors : a ∈ A : finite alphabet,

and where the color of a given site i depends on a finite
neighborhood of the site which depends on the total configuration
of the field.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Typical Example

• Consider a Markov random field of order 1, taking values ±1 at
each site.

• Report each site with probability p, and with 1− p, put the value
−1.

• Yields a VNRF : contexts are the interiors of self-avoiding paths
having +1 on its boundary. I do not speak about wheather these
contexts are finite or not here...

• See : Cassandro, Galves, L. 2012, see also the literature about
factor maps in one-dimensional frame (Chazotte and Ugalde
2011, Verbitskiy 2011, ...)

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF



Introduction
Context-Estimation

Interaction graph estimation in interacting neuronal systems

Typical Example

• Consider a Markov random field of order 1, taking values ±1 at
each site.

• Report each site with probability p, and with 1− p, put the value
−1.

• Yields a VNRF : contexts are the interiors of self-avoiding paths
having +1 on its boundary. I do not speak about wheather these
contexts are finite or not here...

• See : Cassandro, Galves, L. 2012, see also the literature about
factor maps in one-dimensional frame (Chazotte and Ugalde
2011, Verbitskiy 2011, ...)

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF



Introduction
Context-Estimation

Interaction graph estimation in interacting neuronal systems

To come back to the general concept of Variable neighborhood
random fields :

No Markovian assumption.

Call the relevant neighborhood needed in order to determine
the color of site i an i−context.

Hence if the total configuration is ω ∈ AZd\{i}, the i−context
is

a finite configuration ci (ω) ∈ AZd\{i}.

It is the smallest configuration needed in order to determine
the value of site i , given the outside ω.
Write `i (ω) for its radius (radius of the smallest ball
containing it)

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Context-trees

The set of all possible contexts forms a tree : the
context-tree.

That means : No context ci (ω) can be shortened. And an
extension is not needed.

The set of all contexts ci (ω) defines a partition of all

configurations η ∈ AZd\{i}.

In dimension d = 1 : Variable-length Markov chains : Rissanen
(1983) (data compression), Bühlman and Wyner (1999), Galves
and Leonardi (2008) (bio-informatics, protein-expression), Cénac,
Chauvin, Paccaut and Pouyanne (2015) and many others.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Random Fields with variable length interactions

i−context-function : this is a function f : Ω = AZd → R
such that f (ω) = f (η) whenever ci (ω) = ci (η).

Specification : µ defined though its specification {γΛ}Λ⊂Zd .

For simplicity : Consider only the one-point specification
γi (a|ω).

Definition

A RF µ consistent with the above specification is called a VNRF if
for any fixed a, γi (a|·) is an i−context function.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Context-Estimation

Statistical question : Sampling µ over an increasing sequence of
finite regions Λn ⊂ Zd , is it possible to estimate `i (ω), the length
of the context of i given the realization ω ?

Translation to the framework of random fields of the algorithm
Context introduced by Rissanen (1983).
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Given the observation ω(Λn) :

Fix a site i . Start with a candidate context

ω
k(n)
i := {ωj : 0 < ||j − i || ≤ k(n)},

where k(n) = (log |Λn|)
1

2d .

Then decide to shorten or not this candidate context by using
some gain function, for example the log-likelihood ratio
statistics.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Let for any ` ≤ k(n)

Nn(ω`i ) =
∑
j

1{X `
j =ω`

i }

be the total number of occurrences of the observed pattern
ω`i = {ωj : 0 < ||j − i || ≤ `}.

In the same way :

Nn(ω`i , a) =
∑
j

1{X `
j =ω`

i ,Xj=a}.

The estimator of the one-point specification – supposing that
the true context is of length at most ` – is then defined by

p̂n(a|ω`i ) :=
Nn(ω`i , a)

Nn(ω`i )
.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Finally define

log Ln(i , `) =
∑

v∈A∂Bl (i)

∑
a

Nn((ω`−1
i v , a) log

(
p̂n(a|ω`−1

i v)

p̂n(a|ω`−1
i

)
:

the log-likelihood ratio statistics for testing the consistency of
the sample with a context of length `− 1 against length `.

Definition

ˆ̀
n(i) := max{` ≤ k(n) : log Ln(i , `) > pen(`, n)}

where k(n) = (log |Λn|)
1

2d and where the penalty term is chosen by

pen(`, n) = C |A||∂B`(i)| log |Λn|.

|A||∂B`(i)| : degree of freedom when comparing a context of length
`− 1 to all possible contexts of length `.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Theorem

1. The probability of overestimation can be bounded by

µ(ˆ̀
n(i) > `i (ω)) ≤ C1 exp

(
−C2qmin (log |Λn|)1/2

)
+ Remn.

Here,
qmin = inf

a
inf
ω
γi (a|ω).

2. In the case of bounded trees and of Dobrushin’s uniqueness
condition : The probability of underestimation can be bounded by

µ(ˆ̀
n(i) < `i (ω)) ≤ C1 exp

(
−C2|Λn|1/2

)
+ Remn.

1. can be improved for bounded trees. To have consistency we
need rapid convergence of |Λn| → ∞ : |Λn| = e(1+ε)(log n)2

!!!!

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Ideas of the proof

Two main ingredients :

For the underestimation : Deviation inequality for the ergodic
theorem at exponential rate (following Dedecker 2001). The
field is Φ−mixing !

For the overestimation : Easier ! Typicality results obtained by
Csiszàr and Talata 2006.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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On the test statistics

Suppose l ≤ `i (ω). Then on a good set :

1

|Λn|
log Ln(i , l) ∼

∑
v∈A∂Bl (i)

∑
a

p(ωl−1
i v , a) log

(
p(a|ωl−1

i v)

p(a|ωl−1
i )

)

=
∑

v∈A∂Bl (i)

p(ωl−1
i v)H(p(·|ωl−1

i v), p(·|ωl−1
i )),

where H is relative entropy.

Well-known : if there exists at least one a ∈ A such that
p(a|ωl−1

i v) 6= p(a|ωl−1
i ), then relative entropy is strictly positive :

We gain as long as l ≤ li (ω), and the order of gain should be |Λn|!

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Systems of interacting neurons

• Recently, in a joint paper with A. Duarte, A. Galves and G. Ost,
we have extended these ideas to systems of interacting neurons.

• Huge or infinite system of neurons that interact.

• Spike train : for each neuron i we indicate if there is a spike or
not at time t, t ∈ Z.

Xt(i) ∈ {0, 1},Xt(i) = 1⇔ neuron i has a spike at time t .

• t is an index of the time window in which we observe the neuron.
In the data we considered, the width of this window is typically 3
ms.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Background

• Integrate and fire models : the membrane potential process of
one neuron accumulates the stimulus coming from the other
neurons. It spikes depending on the height of the accumulated
potential.

• Then : reset to a resting potential (here : = 0). Restart
accumulating potentials coming from other neurons.

• Hence : Variable length memory : the memory of the neuron
goes back up to its last spike – at least at a first glance.

• This is the framework considered e.g. by Cessac (2011) - but
only for a finite number of neurons.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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The model

Chain Xt ∈ {0, 1}I ,

Xt = (Xt(i), i ∈ I),Xt(i) ∈ {0, 1}, t ∈ Z,

I countable is the set of neurons. We will work in the case
where I is infinite.

Time evolution : At each time step, neurons update
independently from each other :

For any finite subset J of neurons,

P(Xt(i) = ai , i ∈ J|Ft−1) =
∏
i∈J

P(Xt(i) = ai |Ft−1),

where
Ft−1 is the past history up to time t − 1 .

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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The model II

P(Xt(i) = 1|Ft−1) = φ

∑
j

Wj→i

t−1∑
s=Lit+1

g(t − s)Xs(j)

 .

Here :

Wj→i ∈ R : synaptic weight of neuron j on i .

Li
t = sup{s < t : Xs(i) = 1} last spike strictly before time t in

neuron i .

g : N→ R+ describes a leak effect.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Excitatory versus inhibitory influence

Neurons who have a direct influence on i are those belonging to

Vi := {j : Wj→i 6= 0} :

Either excitatory : Wj→i > 0.
Or inhibitory : Wj→i < 0.

Goal : Estimate the Interaction neighborhood Vi of a fixed neuron
i .

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Conditions

1) Spiking rate function φ is strictly increasing and Lipschitz :

|φ(z)− φ(z ′)| ≤ γ|z − z ′|.

2) Uniform summability of the synaptic weights

r := sup
i

∑
j

|Wj→i | <∞.

3) Put % =
∑∞

s=1 g(s). Then we have γr% < 1.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Theorem

Under the above hypotheses : there exists a unique stationary
chain Xt(i), t ∈ Z, i ∈ I, consistent with the dynamics.

AIM :

Put V≥δi = {j ∈ Vi : |Wj→i | ≥ δ} and try to estimate it ! ! !

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Estimation procedure

• Growing sequence of finite windows Fn - centered around site i .

• For a test-configuration w ∈ {0, 1}{−`,...,−1}×Fn\{i} :

N(i ,n)(w , 1) counts the number of occurrences of w followed by a
spike of neuron i in the sample X1(Fn), . . . ,Xn(Fn), when the last
spike of neuron i has occurred `+ 1 time steps before in the past.

• Estimated spiking probability p̂(i ,n)(1|w) =
N(i,n)(w ,1)

N(i,n)(w) .

• Test statistics to test the influence of neuron j on neuron i :

∆(i ,n)(j) = max
w ,v :v{j}c =w{j}c

|p̂(i ,n)(1|w)− p̂(i ,n)(1|v)|.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Definition

For any positive threshold parameter ε > 0, the estimated
interaction neighborhood of neuron i ∈ Fn, at accuracy ε, given
the sample X1(Fn), . . . ,Xn(Fn), is defined as

V̂
(ε)
(i ,n) = {j ∈ Fn \ {i} : ∆(i ,n)(j) > ε}.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Remark

1) Spiking probability of each neuron depends on spatio-temporal
portions of the past : Xt(i) depends on all random variables Xs(j)
for j ∈ Vi and Li

t + 1 ≤ s ≤ t − 1.

In particular, since Li
t is known,

temporal dependencies do not need to be estimated.

2) One could modify the definition of V̂
(ε)
(i ,n) by considering a

sequential pruning procedure.... Our procedure is more robust with
respect to the control of the underestimation.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Conditions

1) Transition probabilities are uniformly positive (on the compact
where observations take place).

2) If card(Vi ) =∞ : |Fn| ≤ D log n. Moreover, there are constants
C > 0 and α > 2 such that for Vi (n) = Vi ∩ Fn,∑

j /∈Vi (n)

|Wj→i | ≤ Cn−α,

for all n ∈ N.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Theorem

Let X1(Fn), . . . ,Xn(Fn) be a sample produced by a stationary
stochastic chain (Xt)t∈Z satisfying our assumptions. Then for
εn = O(n−ξ/2), for some ξ > 0,

V≥δi ⊆ V̂
(εn)
(i ,n) ⊆ Vi (n) almost surely as n→∞.

In particular, for any subset F ⊂ I finite, it holds that

V̂
(εn)
(i ,n) ∩ F = Vi ∩ F almost surely as n→∞.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Ingredients of the proof

• Cut the spatial dependencies ! ! ! ! Coupling of the stationary
process X = (Xt)t∈Z with a finite range approximation

X [R] = (X
[R]
t )t∈Z, for some fixed R ≥ 1 :

sup
j∈I ,s≤t

P(Xs(j) 6= X
[R]
s (j)) ≤ γ%

1− (γr%)

∑
k /∈Vi (R)

|Wk→i |.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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New Hoeffding-type inequality

w ∈ {0, 1}{−`,...,−1}×I\{i} ⇒

pi (1|w) = φ

∑
j∈Vi

Wj→i

−1∑
s=−`

g(−s)wj(s)

 .

Proposition

For any w ∈ {0, 1}{−`,...,−1}×I\{i}, any λ > 0 and all n > `+ 1,

P(|M(i ,n)(w)| > λ) ≤ 2 exp

{
− 2λ2

n − `+ 1

}
P(N(i ,n)(w) > 0),

where M(i ,n)(w) := N(i ,n)(w , 1)− pi (1|w)N(i ,n)(w).

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF
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Perspectives

• Extension to non-uniqueness frame seems possible. Allows to
consider situations where the stationary regime depends on the
initial conditions.

• Add some external stimulus. Therefore, work in the
non-stationary and even non-time-homogeneous case ?

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF



Introduction
Context-Estimation

Interaction graph estimation in interacting neuronal systems

Some literature

• Orlandi, E., L.E. Neighborhood radius estimation in VNRF
SPA 2011.

• Duarte, A., Galves, A., L.E., Ost, G., Estimating the
interaction graph of stochastic neural dynamics. 2016, arXiv.
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Thank you for your attention.

E. Orlandi, A. Duarte, A. Galves, G. Ost VNRF


	Introduction
	Context-Estimation
	Interaction graph estimation in interacting neuronal systems

