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Hydrodynamic limit for stochastic particle systems confined in a
region.

PDE’s have to be complemented with the boundary conditions.
• Boundary effects are determined by the forces acting to keep
the system confined in a bounded region.
Most studied case: boundary forces are due to reservoirs which
fix the densities at the boundaries.

• Free boundary problems: region confining the system is
determined by the state of the system itself.

Macroscopic theory and examples of microscopic models.
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Macroscopic theory

The systems are continuum bodies confined in a region Ω, each
point r ∈ Ω is representative of a large microscopic system.

I will consider only one dimension and systems with a unique
order parameter (density).

Macroscopic states are non negative L1(Ω) functions ρ(r)
r ∈ Ω (the summability assumption ensures that the total mass∫

Ω
ρ(r) is well defined.)

Postulate: the thermodynamics of the system is determined by
a free energy functional F (ρ).

Equilibrium thermodynamical states are the minima of the free
energy functional
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Macroscopic theory: evolution

The first equation is the law of conservation of mass:

∂ρ

∂t
= −∂J

∂r

with J = J(r , t) the current.
The above continuity equation has to be complemented with a
constitutive equation for the current. The choice is finalized to
ensure decrease of the free energy:

J = −κ(ρ)
∂

∂r

(δF (ρ)

δρ(r)

)
κ(ρ) > 0 is a model dependent coefficient called mobility.
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Macroscopic theory: periodic boundary conditions

Remark: with periodic b.c. we avoid interaction with walls!

∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)

∂

∂r

(δF (ρ)

δρ(r)

)
, r ∈ Ω

Assume Ω is the unit circle, then the total mass is conserved

d
dt

∫
Ω
ρ(r , t)dr = 0

and the free energy is monotone non increasing

dF (ρ(·, t))

dt
=

∫
Ω

δF (ρ)

δρ(r)

∂ρ

∂t
dr = −

∫
Ω
κ
( ∂
∂r
δF (ρ)

δρ(r)

)2
dr ≤ 0

(integrating by parts and using periodicity)
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Macroscopic theory: periodic boundary conditions.
Example.

Free energy is the entropy: F (ρ) =

∫
Ω

f (ρ(r))dr

f (ρ) = ρ log ρ+ (1− ρ) log(1− ρ)

Its gradient flow is

dρ
dt

=
d
dr

(
κ(ρ)

d
dr

log
ρ

1− ρ

)
which, with the choice κ(ρ) =

1
2
ρ(1− ρ) becomes the heat

equation
dρ
dt

=
1
2

d2ρ

dr2 , r ∈ Ω
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Microscopic model for the example (periodic boundary
conditions)

Symmetric exclusion process on Λε := ε−1Ω∩Z, Ω the circle.

{ηt (x) ∈ {0,1}, x ∈ Λε, t ≥ 0} is the process with generator:

L0f (η) =
1
2

∑
x∈Λε

∑
y :|y−x |=1

(
f (η(x ,y))− f (η)

)
Invariant measures are νρ product of Bernoulli, formally given
by the Gibbs formula

νρ(η) =
∏

x

exp
{1

2
[η(x) log ρ+ (1− η(x) log(1− ρ)]

}
The mobility is

κ(ρ) =
1
2

∑
x

νρ

(
η(0)[η(x)− ρ]

)
=

1
2
ρ(1− ρ)
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Symmetric exclusion process: hydrodynamic limit
(periodic boundary conditions)

Λε := ε−1Ω ∩ Z, Ω the circle.

Order parameter (empirical averages): ` = ε−b, b ∈ (0,1)

M`(r , η) :=
1
`

∑
x :|x−ε−1r |≤`

η(x), r ∈ Ω

Initial conditions: ρ0(r) ≥ 0 r ∈ Ω fixed. The law of η0
approximates the initial profile ρ0

lim
ε→0

P
(

sup
r
|M`(r , η0)− ρ0(r)| ≤ εa

)
= 1

a > 0 small.
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Symmetric exclusion process: hydrodynamic limit
(periodic boundary conditions)

Theorem
Given any T > 0, for all t ≤ T

lim
ε→0

P
(

sup
r
|M`(r , ηε−2t )− ρ(r , t)| ≤ εa

)
= 1

with ρ(r , t) solution of the heat equation:

∂ρ

∂t
=

1
2
∂2ρ

∂r
, r ∈ Ω

with initial condition ρ(r ,0) = ρ0.
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Stirring.

At each pair of n.n. sites Poisson clock of intensity 1
2 ,

t

0

N

when it rings exchange the occupation numbers.
t

0

N

Rencontres de Probabilités, Rouen 2013



Symmetric exclusion process: Fick’s law
(periodic boundary conditions)

The macroscopic current J(r , t) satisfies the Fick’s law:

J(r , t) = −1
2
∂ρ(r , t)
∂r

Microscopic current is the expected signed mass crossing a
point x + 1

2 per unit time (from the left minus that from the right).

j(x , ηt ) :=
1
2
[
ηt (x)− ηt (x + 1)

]
[·] the integer part, r ∈ Ω and t ≤ T

lim
ε→0

ε−1 E
(

j([ε−1r ], ηε−2t )
)

= −1
2
∂ρ(r , t)
∂r

At equilibrium current=0.
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Open systems

Open means that the system is in contact with the “outside”.

“Typical example”: a metal bar cooled at one end and warmed
at the other, the two extremes being kept at two different
temperatures T+ > T−.

In our set up we consider densities, so the system is
in contact with two reservoirs that keep the densities equal to ρ1
in one side and to ρ2 in the other side.

system
1

reservoir reservoir

ρ
2ρ
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Macroscopic theory: Dirichlet boundary conditions

Ω = [0,1] and F (ρ) =

∫
Ω

f (ρ(r))dr is the free energy.

Natural to complement the equation with Dirichlet b. c.:

∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)

∂f ′(ρ)

∂r
, r ∈ (0,1)

ρ(0, t) = ρ0, ρ(1, t) = ρ1, ρ(r ,0) given

The total mass is not conserved:

d
dt

∫ 1

0
ρ(r , t)dr = J(0, t)− J(1, t)

The free energy is not monotone:

dF (ρ(·, t))

dt
= J(0, t)f ′(ρ0)− J(1, t)f ′(ρ1)−

∫ 1

0
κ(ρ)

(∂f ′(ρ(r , t)
∂r

)2
dr
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Macroscopic theory: Dirichlet boundary conditions

Law of thermodynamics: the free energy is monotone non
increasing.∫ 1

0
ρ(r , t)dr =

∫ 1

0
ρ0(r)dr + X0(t)− X1(t)

X0(t) =

∫ t

0
J(0, s)ds, X1(t) =

∫ t

0
J(1, s)ds

Interpretation: the reservoir connected at 0 send in a mass
X0(t), the reservoir connected at 1 remove a mass X1(t).

Λ0= region occupied by the left reservoir, Λ1= region occupied
by the right reservoir

Assume: |Λ0| and |Λ1| very large and that the reservoirs
“instantaneously” homogeinize any change of mass
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Macroscopic theory: Dirichlet boundary conditions

Left reservoir: at t=0 has density ρ0, at time t has density

ρ0 −
X0(t)
|Λ0|

≈ ρ0

Right reservoir: at time t has density ρ1 +
X1(t)
|Λ1|

≈ ρ1

The free energies at time t are

FΛ0,t = |Λ0|f
(
ρ0 −

X0(t)
|Λ0|

) ≈ FΛ0,0 − f ′(ρ0)X0(t)

FΛ1,t = |Λ1|f
(
ρ1 −

X1(t)
|Λ1|

) ≈ FΛ1,0 + f ′(ρ1)X1(t)
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The total free energy

F total = F (ρ(·, t)) + FΛ0,t + FΛ1,t

≈ F (ρ(·, t)) + FΛ0,0 − f ′(ρ0)J(0, t) + FΛ1,0 + f ′(ρ1)J(1, t)

is monotone non increasing:

dF total

dt
=

dF (ρ(·, t))

dt
− f ′(ρ0)X0(t) + f ′(ρ1)X1(t)

= −
∫ 1

0
κ(ρ)

(∂f ′(ρ(r , t)
∂r

)2
dr
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Symmetric exclusion process: density reservoirs

SSEP in Λε = [0, ε−1] ∩ Z = {0,1, ...,N}, N = [ε−1].

Put two independent Poisson clocks of intensity 1
2 at the

pairs (−1,0) and (N,N + 1).

When it rings at (N,N + 1) put a particle at N with prob. ρ1,

η(N) = 0 with probability 1−ρ1, η(N) = 1 with probability ρ1

and analogously if it rings at (−1,0)

η(0) = 0 with probability 1−ρ0, η(N) = 1 with probability ρ0
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Symmetric exclusion process: density reservoirs

N

Generator L = L0 + L′, L0 stirring

L′f (η) = ρ1[f (η(+,N))− f (η)] + (1− ρ1)[f (η(−,N))− f (η)]

+ ρ0[f (η(+,0))− f (η)] + (1− ρ0)[f (η(−,0))− f (η)]

where 1 ≥ ρ1 > ρ0 ≥ 0

η+,x (x) = 1, η+,x (y) = η(y), y 6= x

η−,x (x) = 0, η−,x (y) = η(y), y 6= x
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Symmetric exclusion process: density reservoirs

By duality:

E
(
ηt (x)

)
=
∑
y∈Λε

p0
t (x , y)E

(
η0(x)

)
+ qt (x ,−1)ρ0 + qt (x ,N + 1)ρ1

p0
t (x , y) is the probability a random walk goes from x to y in a

time t without ever touching −1 and N + 1

qt (x ,−1) is the probability to reach -1 before N + 1 within t .

qt (x ,N + 1) is the probability to reach N + 1 before −1 within t .

Assume that the law of η0 approximates an initial profile
ρ0(r) ≥ 0, r ∈ (0,1).
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Symmetric exclusion process: hydrodynamic limit
(density reservoirs)

Theorem
Given any T > 0, for all t ≤ T

lim
ε→0

P
(

sup
r
|M`(r , ηε−2t )− ρ(r , t)| ≤ εa

)
= 1

with ρ(r , t) solution of the heat equation: ρ(r ,0) = ρ0(r) and

∂ρ

∂t
=

1
2
∂2ρ

∂r2 , r ∈ (0,1)

with Dirichlet b.c. ρ(0, t) = ρ0, ρ(1, t) = ρ1.

ρ(r , t) =

∫
G0

t (r , z)ρ(z,0)dz + Qt (r ,0)ρ0 + Qt (r ,1)ρ1
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SEP: stationary non equilibrium state, Fick’s law
(density reservoirs)

The unique invariant measure µε is such that for any x ∈ Λε

lim
ε→0,εx→r

µε
(
η(x)

)
= (ρ1 − ρ0)r + ρ0

Microscopic current and Fick’s law

lim
ε→0

ε−1 µε
(
η(x)− η(x + 1)

)
= ρ1 − ρ0
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Macroscopic theory: current reservoirs

Open system: Ω = [0,1], free energy F (ρ) =

∫ 1

0
f (ρ(r))dr

∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)

∂f ′(ρ)

∂r
r ∈ (0,1)

Current reservoirs force a flux of mass into the system (without
freezing the order parameter at the endpoints).

A current reservoir of parameter j ∈ R is such that the currents
at the endpoints are:

J(0, t) = jλ
(
ρ(0, t)

)
J(1, t) = jλ

(
ρ(1, t)

)
where λ(ρ) is a model dependent, mobility parameter not
necessarily equal to the bulk mobility κ(ρ).
As we will see the case λ ≡ 1 corresponds to free boundary
motion.
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Macroscopic theory: current reservoirs

A flux of mass J(0, t) enters into the system at the point 0,
a flux of mass J(1, t) leaves the system at the point 1.

Change of energy in 0 during the time interval (t , t + dt) is

E0dt := f
(
ρ(0, t) + J(0, t)dt

)
− f
(
ρ(0, t)

)
≈ f ′

(
ρ(0, t)

)
J(0, t)dt

Analogously

E1dt = f
(
ρ(1, t)− J(1, t)dt

)
− f
(
ρ(1, t)

)
≈ −f ′

(
ρ(1, t)

)
J(1, t)dt

Thus the total change of free energy is

d
dt

F tot(ρ(·, t)) =
d
dt

∫ 1

0
f (ρ(r , t))dr − E1 − E0
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Symmetric exclusion process: current reservoirs

SEP in Λε = [−N,N] ∩ Z, N = ε−1.
Impose a macroscopic current j > 0 by sending in particles

from the right at rate
j
N

and taking out particles from the
left at the same rate.

−N y Nx
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Symmetric exclusion process: current reservoirs

SEP in ΛN = [−N,N] ∩ Z.

As we want the boundary processes localized at the boundaries
we fix two intervals I± of length K at the boundaries

I
+

N

−

−N+K N−K−N

I

we send in particles (at rate
j
N

) only in I+ and take out particles
only from I−.

If I+ is already full or I− empty, then our mechanisms abort.

DM, Presutti, Tsagkarogiannis, Vares (DPTV)

Rencontres de Probabilités, Rouen 2013



Symmetric exclusion process: current reservoirs

Generator: L = L0 +
j

2N
Lb, L0 stirring generator,

Lb = Lb,+ + Lb,− describes births and deaths near the
boundaries:

Lb,±f (η) :=
∑
x∈I±

D±η(x)[f (η(x))− f (η)]

D+η(x) = (1− η(x))η(x + 1) · · · η(N)

D−η(x) = η(x)(1− η(x − 1)) · · · (1− η(−N))

η(x) obtained from η by changing the occupation number at x .
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Symmetric exclusion process: current reservoirs

Initial conditions: ρ0(r) r ∈ [−1,1] and the law of η0
approximates the initial profile ρ0.

lim
ε→0

P
(

sup
r
|M`(r , η0)− ρ0(r)| ≤ εa

)
= 1

Recall

M`(r , η) :=
1
`

∑
x :|x−ε−1r |≤`

η(x)
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Symmetric exclusion process: hydrodynamic limit
(current reservoirs)

SEP in Λε = [−N,N] ∩ Z, N = ε−1.

Theorem

lim
ε→0

P
(

sup
r
|M`(r , ηε−2t )− ρ(r , t)| ≤ εa

)
= 1

where
∂

∂t
ρ(r , t) =

1
2
∂2

∂r2 ρ(r , t), r ∈ (−1,1)

with initial datum ρ(r ,0) = ρ0(r) and boundary conditions
ρ(±1, t) = u±(t) that satisfy non linear coupled equations.

DPTV J. Stat. Phys. 2011, Electronic J. of Prob. (2011)
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SEP: hydrodynamic limit (current reservoirs)

The functions u±(t) are the solutions of a nonlinear system of
two integral equations:

u±(t) =

∫ 1

−1
Pt (±1, r)ρ0(r)dr +

j
2

∫ t

0

{
Ps(±1,1)(1− u+(t− s)K)

−Ps(±1,−1)(1− (1− u−(t− s))K)
}

ds

1− u+(t)K is (in the limit) the probability of a hole in I+

1− (1− u−(t))K the probability of a particle in I−

Pt (r , r ′) is the density kernel of the semigroup with generator
the laplacian in [−1,1] with reflecting, Neumann, boundary
conditions.

Rencontres de Probabilités, Rouen 2013



P(N)
t (x , y) = prob. that r.w. starting at x is at y at time N2t :

E
(
ηt (x)

)
=

∑
y

P(N)
t (x , y)E

(
η0(x)

)
+ jN

∫ t

0

∑
y∈I±

P(N)
s (x , y)E

(
D±ηt−s(y)

)

D+η(y) = (1− η(y))η(y + 1) · · · η(N), y ∈ I+

D−η(y) = η(y)(1− η(y − 1)) · · · (1− η(−N)), y ∈ I−

P(N)
s (x , y) ≈ 1

N
Ps(N−1x ,1) for all y ∈ I+ and if ν= Bernoulli

with parameter ρ

∑
y∈I+

Eν
(
D+η(y)

)
=

K∑
n=1

(1− ρ)ρn = 0− ρK
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SEP: Fick’s law (current reservoirs)

Microscopic current

j(N)(x , t) = −1
2
E
[
η(x + 1, t)− η(x , t)

]

Theorem
(same assumptions)

lim
N→∞

Nj(N)([Nr ],N2τ) = −1
2

dρ(r , τ)

dr

the limit currents J+(t) and J−(t) at the boundaries are:

J+(t) = j
[
1− u+(t)K

]
, J−(t) = j

[
1− (1− u−(t))K

]
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Macroscopic theory: current reservoirs

Recall that macroscopically a current reservoir of parameter
j ∈ R is such that the currents at the endpoints are:

J(−1, t) = jλ
(
ρ(−1, t)

)
J(1, t) = jλ

(
ρ(1, t)

)
where λ(ρ) is a mobility parameter not necessarily equal to the
bulk mobility κ(ρ).

We have found in our model

λ(ρ(−1, t)) = 1− (1− ρ(−1, t))K

λ
(
ρ(1, t)

)
= 1− ρ(−1, t)K
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SEP: hydrodynamic limit: idea of proof.

Strong factorization starting from any single configuration.
DPTV: Electronic J. of Prob. (2011)
x = (x1, .., xn), xi 6= xj . n body v-functions is (ε = N−1)

vn(x , t ; η0) = Eη0

( n∏
i=1

[
ηt (xi)− ρε(xi , t)

])
ρε(x , t), x ∈ ΛN , t ≥ 0 solution of the “discretized macroscopic
equation” with ρε(x ,0) = η0(x).

d
dt
ρε(x , t) =

1
2

∆ερε(x , t) + ε
j
2

(
1x∈I+D+ρε(x , t)

−1x∈I−D−ρε(x , t)
)

ρε(x ,0) = η0(x) x ∈ ΛN
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vn(x , t ; η0) = Eη0

( n∏
i=1

[
ηt (xi)− ρε(xi , t)

])

Theorem
∃τ > 0, ∃δ > 0, for all n there is cn so that ∀η0 and for all
0 < t ≤ τ log N,

sup
x

∣∣vn(x ; N2t ; η0)
∣∣ ≤ cnN−δn
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d
dt

vn(x , t) = (L0vn)(x , t) + (Av)(x , t) +
1
N

(Bv)(x , t),

L0 SEP (stirring) generator acting on x
(Av) linear combination of vn−1 and vn−2 (due to the exclusion)
(Bv) linear combination of vn±`, ` = 1, ...,K (due to the
boundary process)
• terms coming from SEP analyzed in previous papers

• n body correlation feel boundary processes at rate
1
N

T (t),
T (t) the local time at I±

• 1
N

T (t) ≈ 1
N

√
t , hence small if t = t∗ = N2−β, β > 0.

|vn(x, t∗; η)| ≤ cnN−δn

δ independent of β and η.

• Condition on the configuration at time t∗ and restart, by
iteration......
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SEP: stationary measure (current reservoirs)

DPTV: J. Stat. Phys. (2012)
For each N there is a unique stationary measure µst

N.

Theorem

lim
N→∞

Eµst
N

(∏
i

[
η(xi)− %st(xi/N)

])
= 0

where %st is the unique stationary solution of the limit
hydrodynamic equation.

%st(r) = Jr +
1
2
, J = j(1− αK)

with α the solution of α(1 + jαK−1) = j + 1
2

The current in the stationary profile is J < j .

Rencontres de Probabilités, Rouen 2013



SEP: stationary measure (current reservoirs)

Sketch of proof. Macroscopic profile: %′′st = 0 in (−1,1) + bc.

Existence: %′st = 1
2

(
%st(1)− %st(−1)

)
1
2
%′st = j

(
1− %st(1)K )

1
2
%′st = j

(
1− [1− %st(−1)]K

)
Uniqueness: Hydrodynamic equation preserves order:
ρ0(r , t) starts from 0 and ρ1(r , t) from 1
then

ρ0(r , t) ≤ %st(r) ≤ ρ1(r , t)

It can be proved that

ρ1(r, t)− ρ0(r, t) ≤ ae−bt, b > 0
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Also the process preserves order: it is attractive.
if η0(x) ≤ ξ0(x), ∀x ∈ ΛN then there is a coupling such that
ηt (x) ≤ ξt (x), ∀x ∈ ΛN for all t > 0.

Stirring preserves order.

Lb,±f (η) :=
∑
x∈I±

D±η(x)[f (η(x))− f (η)]

D+η(x) = (1− η(x))η(x + 1) · · · η(N)
D−η(x) = η(x)(1− η(x − 1)) · · · (1− η(−N))

It suffices to notice (c(x , η) = D±η(x))

• if η(x) = ξ(x) = 0 and η ≤ ξ then c(x , η) ≤ c(x , ξ)

• if η(x) = ξ(x) = 1 and η ≤ ξ then c(x , ξ) ≤ c(x , η)
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Take φ ≥ 0, then

Eµst
N

[ 1
N

∑
x

φ(N−1x)η(x)
]
≤ E1

[ 1
N

∑
x

φ(N−1x)η(x ,N2t)
]

By taking N →∞,

≤
∫ 1

−1
φ(r)ρ1(r , t)

By taking t →∞,

≤
∫ 1

−1
φ(r)%st(r)

The reverse inequality is proved similarly.
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SEP: spectral gap

Theorem
There are c and b > 0 independent of N so that for any initial
measure νN

‖νN,t − µst
N‖ ≤ cNe−bN−2t

‖λ‖ =
∑

η |λ(η)|

DPTV: preprint (2013) http://arxiv.org/abs/1304.0624
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SEP: spectral gap

In some respect surprising!

•With j = 0, L = L0 ( stirring process) restricted to any of the
invariant subspaces {η :

∑
η(x) = M} has a spectral gap that

scales as N−2.

The full process with L = L0 +
j
N

Lb in a time of the same order

N2 manage to equilibrate among all the above subspaces
according to µst

N .

• Density reservoirs: L = L0 + L′.
Same spectral gap: ‖νN,t − µst

N‖ ≤ cNe−bN−2t .

Here the birth-death events are not scaled down with N.
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SEP: spectral gap

We do not have sharp information on µst
N .

We know that µst
N is close to a product measure γN and that the

expectations γN [η(x)] ∼ ρst(x/N) which does not seem detailed
enough to apply the usual techniques for the spectral gap using
equilibrium estimates.

Way out: use inequalities exploiting the fact that the process is
attractive.
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SEP: spectral gap. Idea of proof.

For simplicity assume that K = 2

I+ = {N − 1,N}, I− = {−N,−N + 1}

Couple the processes starting from all 1 and from all 0.

First component is always above the second one.

XN =
{

(η(1), η(2)) ∈ ({0,1}×{0,1})[−N,N] : η(1)(x)−η(2)(x) ≥ 0, ∀x
}

standard coupling.

Rencontres de Probabilités, Rouen 2013



SEP: spectral gap. Idea of proof.

For simplicity assume that K = 2

I+ = {N − 1,N}, I− = {−N,−N + 1}

Couple the processes starting from all 1 and from all 0.

First component is always above the second one.

XN =
{

(η(1), η(2)) ∈ ({0,1}×{0,1})[−N,N] : η(1)(x)−η(2)(x) ≥ 0, ∀x
}

standard coupling.

Rencontres de Probabilités, Rouen 2013



At each site x we may only have:

x

vf
discrepancy (1,0): η 6=(x) := η(1)(x)− η(2)(x) = 1

x

vv
full occupation (1,1): η1(x) := η(1)(x)η(2)(x) = 1

x

ff
full void (0,0): η0(x) := [1− η(1)(x)][1− η(2)(x)] = 1

Rencontres de Probabilités, Rouen 2013



At each site x we may only have:

x

vf
discrepancy (1,0): η 6=(x) := η(1)(x)− η(2)(x) = 1

x

vv
full occupation (1,1): η1(x) := η(1)(x)η(2)(x) = 1

x

ff
full void (0,0): η0(x) := [1− η(1)(x)][1− η(2)(x)] = 1

Rencontres de Probabilités, Rouen 2013



At each site x we may only have:

x

vf
discrepancy (1,0): η 6=(x) := η(1)(x)− η(2)(x) = 1

x

vv
full occupation (1,1): η1(x) := η(1)(x)η(2)(x) = 1

x

ff
full void (0,0): η0(x) := [1− η(1)(x)][1− η(2)(x)] = 1

Rencontres de Probabilités, Rouen 2013



At each site x we may only have:

x

vf
discrepancy (1,0): η 6=(x) := η(1)(x)− η(2)(x) = 1

x

vv
full occupation (1,1): η1(x) := η(1)(x)η(2)(x) = 1

x

ff
full void (0,0): η0(x) := [1− η(1)(x)][1− η(2)(x)] = 1

Rencontres de Probabilités, Rouen 2013



Initially η6=(x) = 1 for all x (we start with η(1) ≡ 1 and η(2) ≡ 0).

Theorem
N∑

x=−N

P[η 6=(x , t) = 1] ≤ cNe−bN−2t

Proof: reduction to a random walk in a random moving
environment.
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ξ ∈ {#,1,0}ΛN

x

vf
discrepancy: ξ(x) = #

x

vv
full occupation: ξ(x) = 1

x

ff
full void: ξ(x) = 0
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Evolution ξt ∈ {#,1,0}ΛN , t ≥ 0:

SEP (stirring) exchanges the occupation numbers of ξ.

At the boundaries I+ = {N − 1,N}, I− = {−N,−N + 1} the

changes are at rates
j
N

.

Three types of events: D, A and B.
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Action at the boundary I+ = {N − 1,N}

D-event at N: ξ(N) = # changes in ξ(N) = 1

before jump
N − 1 N

vv vf
after

N − 1 N

vv vv

or

before jump
N − 1 N

vf vf
after

N − 1 N

vf vv
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Action at the boundary I+ = {N − 1,N}

D-event at N − 1: ξ(N − 1) = # changes in ξ(N − 1) = 1

before jump
N − 1 N

vf vv
after

N − 1 N

vv vv
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Action at the boundary I+ = {N − 1,N}

A-event: ξ(N) = # changes in ξ(N) = 1 and
ξ(N − 1) = 0 changes in ξ(N − 1) = #

before jump:

N − 1 N

ff vf after

N − 1 N

vf vv
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Action at the boundary I+ = {N − 1,N}

B-event at N or at N − 1: ξ(x) = 0 changes in ξ(x) = 1,
x = N,N − 1

before jump:

N − 1 N

ff vv after

N − 1 N

vv vv

or

before jump:

N

ff after

N

vv
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Call xt the position at time t of a discrepancy.
At t = 0 all the sites of ΛN are occupied by a discrepancy.

Motion of xt : it is a random walk (stirring of the ξ-process) and:

• if an A-event occurs then it jumps from N to N − 1 if
ξ(N − 1) = 0, and analogously from −N to −N + 1 if
ξ(−N + 1) = 1.

• if a D -event occurs then it dies (with the conditions explained
before). We say that the discrepancy goes in the state ∅.

• B -events do not effect the motion of the discrepancies.
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We have to prove that the probability that all the discrepancies
die out is exponentially close to 1.

I will prove later that it is enough to consider the case of a
single discrepancy.

This lead to the analysis of a random walk xt in a moving
random environment ξt ∈ {#,0,1}[−N,N]\xt when xt 6= ∅ (i.e. it is
alive)

We need to estimate P(xt 6= ∅).
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Random walk in a moving random environment

The process {xt , t ≥ 0} has jump intensities at time t given by
the conditional probabilities of the environment conditioned on
the state of the random walk at that time.

Movements. Random walk at rate 1 to n.n. sites + extra jumps
N → N − 1 and −N → −N + 1 at rates a(±N, t) .

a(N, t) =
j

2N
P
[
(ξ(N − 1, t) = 0)

∣∣ xt = N
]

Recall the A-events:

before jump:

N − 1 N

ff vf after

N − 1 N

vf vv
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Random walk in a moving random environment

Dead rates: d(N − 1, t) and d(N, t) (coming from the
D-events).

before jump:

N − 1 N

vf vv after

N − 1 N

vv vv

d(N − 1, t) = P
[
ξ(N, t) = 1

∣∣ xt = N − 1
]

ecc.....
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The operator Lt

Functions f defined in ΛN ∪ {∅}.

a(N, t) =
j

2N
P
[
(ξ(N − 1, t) = 0)

∣∣ xt = N
]
,

a(−N, t) =
j

2N
P
[
(ξ(−N + 1, t) = 1

∣∣ xt = −N
]

La
t f (x) = L0f (z) + 1x=Na(N, t)[f (N − 1)− f (N)]

+ 1x=−Na(−N, t)[f (−N + 1)− f (−N)],

La
t generator of a random walk.
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The full time- dependent generator Lt is obtained by adding the
dead part.

Lt f (x) = La
t f (x) +

j
2N

d(x , t)[f (∅)− f (z)],

d(x , t) = 0 if |x | < N − 1,

d(N − 1, t) = P
[
ξ(N, t) = 1

∣∣ xt = N − 1
]

d(N, t) = P
[
ξ(N − 1, t) 6= 0

∣∣ xt = N
]
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Define a time-dependent Markov process {zt , t ≥ 0} with time-
dependent generator Lt . The survival probability for this
random walk is

P
[
zt 6= ∅

]
= E

[
exp{− j

N

∫ t

0
d(~zs,s) ds}

]
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Lemma
Let z0 = x0, then

P
[
xt 6= ∅

]
= P

[
zt 6= ∅

]
Proof. It is enough to prove that for any bounded measurable
function φ(x , η) = f (x):

Ex0,ξ0

[
φ(xt , ξt )

]
= Ex0

[
f (zt )

]
and this follows because

d
dt

Ex0,ξ0

[
φ(xt , ξt )

]
= Ex0,ξ0

[
Lt f (xt )

]
and also

d
dt
Ex0

[
f (zt )

]
= Ex0

[
Lt f (zt )

]
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Random walk in a random moving environment

P
[
zt 6= ∅

]
≤ E

[
exp{−

∫ t

0
d(N, s)1zs=N ds}

]
There are δ∗ > 0 and κ > 0 so that for all t ≥ κN2:

d(N, t) ≥ δ∗

There are c and b > 0 so that calling T ∗(t) the total time
spent at N by zs,0 ≤ s ≤ t :

E
[

exp{−jδ∗N−1T ∗(t)}
]
≤ ce−bN−2t , t ≥ κN2
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Random walk in a random moving environment. Many
discrepancies

Initially all sites are occupied by discrepancies.

Label the initial discrepancies by assigning with uniform
probability a label in {1, ..,2N + 1} to each site in [−N,N]

Call (x1, . . . , x2N+1) the sites corresponding to the labels
1, . . . ,2N + 1.

xi is the position at time 0 of the discrepancy with label i .
At t = 0

P(xi = x) =
1

2N + 1
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Random walk in a random moving environment. Many
discrepancies

We have to bound the quantity

P
[
there is i : xi(t) 6= ∅

]
≤

∑
i

P[xi(t) 6= ∅]

= (2N + 1)P[x1(t) 6= ∅]

last equality by simmetry.

We need to estimate P[x1(t) 6= ∅] in an environment similar to
the one before.
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Some open problems

• Our methods do not allow to study the large deviations of the
stationary measure.

• Extension to other interacting particle systems. Problem:
local equilibrium is not satisfied at the boundary.

• Do the matrix Derrida techniques work for current reservoirs?
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SSEP: Free boundaries.

Impose a macroscopic current j > 0.

At rate εj a particle is placed at the first empty site (from the
left).
At rate εj a particle is removed from the first occupied site (from
the right).

The locations of the first hole and the last particle are
random.

DM,Ferrari,Presutti (2013) http://arxiv.org/abs/1304.0701
Rencontres de Probabilités, Rouen 2013
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SSEP: Free boundaries.

We restrict to configurations which have a rightmost particle
and a leftmost hole. The configuration space is:

X :=
{
η ∈ {0,1}Z :

∑
x≥0

η(x) <∞,
∑
x≤0

(1− η(x)) <∞
}

X(η) = max{x ∈ Z : η(x) = 1}, Y (η) = min{x ∈ Z : η(x) = 0}

w w w g
Y

w w g g w g w g g w
X

g g
black and white circles represent respectively particles and
holes.
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SSEP: Free boundaries.

Markov process {ηt}t≥0 with state space X .

SSEP + birth and death at rate jε, ε > 0 small, j > 0.

The generator is: L0 + jεLbd, Lbd = Lr + L`

L`f (η) :=
(

f (η ∪Y (η))− f (η)
)

; Lr f (η) :=
(

f (η \X (η))− f (η)
)
,

where η is identified with the set of occupied sites
{x ∈ Z : η(x) = 1}.
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SSEP: Free boundaries.

Main features.

• Topological interactions
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani,
E., Giardina, I., ... & Zdravkovic, V. Interaction ruling animal
collective behavior depends on topological rather than metric
distance: Evidence from a field study. Proceedings of the
National Academy of Sciences, 105(4), 1232-1237, (2008).

• Interaction is highly non local: perturbation of the SEP
(L = L0 + εj[Lr + L`]) but Lr + L` are non local (need to find the
last particle and the first hole). The usual techniques do not
apply.

• Hydrodynamic limits with boundary conditions on
derivatives
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Key remark.

Deaths and births happen at exponential times of parameter jε
independently of the particle configuration.

Bt number of rightmost particles removed in the time [0, t ]

At number of leftmost holes removed in the time [0, t ]

are independent Poisson processes both of intensity εj .
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Median

The median M is the point such:
# of holes to the left of M = # of particles to the right of M.

w w w g
Y

w w g g w
M

g w g g w
X

g g

The median M performs a nearest neighbor random walk at
rate εj
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Invariant measure

Process {η̃t}t≥0 seen from the median M:

η̃t = θM(ηt )ηt

θ = the translation (θyη)(x) = η(x − y)

Theorem
For any jε > 0 the process η̃t has a unique invariant measure
µjε and

Eµjε [X (η)− Y (η) + 1] =
1

2jε

Proof: there is a Lyapunov function.
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Number of sites between the first hole and the last particle =
X(η)− Y(η) + 1 scales as (2jε)−1 in equilibrium.

Fick’s law: the stationary current flowing in [Y ,X ] when at the
end points the densities are ρleft and ρright is

J = −1
2
ρleft − ρright

X − Y
= −1

2
1

X − Y

J = εj , ρleft = 1 and ρright = 0 implies X − Y ∼ ε−1

The validity of Fick’s law in our case is however not obvious as
the endpoints X (ηt ) and Y (ηt ) depend on time.
(Further discussions on this later).
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Hydrodynamic limit for SEP with free boundary.

Initial condition. ρ0 ∈ C(R, [0,1]) such that there is L0 < 0 and
R0 > 0 so that ρ0(r) = 0, ∀r ≥ R0, ρ0(r) = 1, ∀r ≤ L0.

Initial configuration η0 approximates the profile ρ0 and also

|εY (η)− L0|+ |εX (η)− R0| ≤ εa, a > 0 small

.

Theorem
There is a function ρt (r) ∈ [0,1], r ∈ R so that

lim
ε→0

Pη0

(
sup

r
|M`(r , ηε−2t )− ρt (r)| ≤ εa

)
= 1

The boundaries Lt and Rt are finite.

Rt = sup{r : ρt (r) = 1}, Lt = inf{r : ρt (r) = 0}
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Identification of the limit (heuristics)

Call Dr the Dirac delta at r .

∂ρ

∂t
=

1
2
∂2ρ

∂r2 + jDLt − jDRt , r ∈ [Lt ,Rt ]

ρ(Rt , t) = 0, ρ(Lt , t) = 1, ρ(r ,0) = ρ0(r)

For any test function φ(r , t):∫
φρt =

∫
1
2
φrrρ+ jφ(Lt , t)− jφ(Rt , t)

Assume ρ smooth, integrate by parts and use boundary
conditions:∫

1
2
φrrρ =

1
2

∫
φρrr +

1
2
[
φ(Lt , t)ρr (Lt , t)− φ(Rt , t)ρr (Rt , t)

]
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∫
φρt =

∫
1
2
φρrr

+ φ(Lt , t)
[
j +

1
2
ρr (Lt , t)

]
− φ(Rt , t)

[
j +

1
2
ρr (Rt , t)

]
We then end up with

∂ρ

∂t
=

1
2
∂2ρ

∂r2 , r ∈ (Lt ,Rt ),

ρ(Lt , t) = 1, ρ(Rt , t) = 0, ρ(r ,0) given

∂ρ

∂r
(Lt , t) =

∂ρ

∂r
(Rt , t) = −2j
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Macroscopic free boundary problem

∂ρ

∂t
=

1
2
∂2ρ

∂r2 , r ∈ (Lt ,Rt ),

ρ(Lt , t) = 1, ρ(Rt , t) = 0, ρ(r ,0) given (1)

∂ρ

∂r
(Lt , t) =

∂ρ

∂r
(Rt , t) = −2j

It seems over-determined (too many b.c.) but is is not.

Fixed point problem: Given Lt and Rt find ρ(r , t) which solves
the heat equation with b.c. (1).

Determine Lt and Rt so that the spatial derivative of ρ at these
points are equal to −2j .
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Reduction to the classical Stefan problem.

By “differentiating” ρ(Lt , t) = 1 and ρ(Rt , t) = 0 we get

dLt

dt
=

1
4j
∂2ρ

∂r2 (Lt , t),
dRt

dt
=

1
4j
∂2ρ

∂r2 (Rt , t)

Define u = ρr

∂u
∂t

=
1
2
∂2u
∂r2 , r ∈ (Lt ,Rt ), u(Lt , t) = −2j = u(Rt , t)

dLt

dt
=

1
4j
∂u
∂r

(Lt , t),
dLt

dt
=

1
4j
∂u
∂r

(Rt , t)

This is now the classical Stefan problem: a diffusive equation
with Dirichlet b.c., on an interval whose endpoints evolve with
velocity determined by the derivative of the solution. To recover
ρ we set

ρ(r , t) := −
∫ Rt

r
u(r ′, t)dr ′, r ∈ [Lt ,Rt ]
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Some references.

- Hubert Lacoin (2013) The scaling limit of polymer pinning
dynamics and a one dimensional Stefan freezing problem.

- Claudio Landim; Glauco Valle. (2006) A microscopic model for
Stefan’s melting and freezing problem.
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Independent particles with births and deaths.

(G. Carinci, C. Giardina, DM, E. Presutti)

Independent random walks in [0, ε−1] ∩ Z (jumps outside
suppressed).

ww
w

0
w ww w ww

ww
ww
w

ww
ε−1

At rate jε a new particle is created at 0,

At rate jε the rightmost particle is deleted
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Generator

ε−1 ∈ N, [0, ε−1] ≡ [0, ε−1] ∩ Z ξ ∈ [0, ε−1]N

ξ(x) = number of particles at x , x ∈ [0, ε−1]

Generator: L = L0 + jε[La + Ld ]: L0= generator of the
independent symmetric random walks

La = add a particle at the origin

Laf (ξ) = f (ξ + 10)− f (ξ)

Ld = remove a particle at the rightmost occupied site

Lbf (ξ) = f (ξ − 1X )− f (ξ)

X : ξ(X ) > 0, ξ(y) = 0 ∀y > X
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Hydrodynamic limit.

Theorem

∃ ρt = ρt (r), r ∈ [0,1], t ≥ 0, non negative and in L1 such that
“ξε−2t converges to ρt weakly” which means:

lim
ε→0

P(ε)
ξ

[
max

x∈[0,ε−1]
|εFε(x ; ξε−2t )− F (εx ; ρt )| > ζ

]
= 0

for any ζ > 0.

Fε(x ; ξ) :=
ε−1∑
y=x

ξ(y); F (r ; ρ) :=

∫ 1

r
ρ(r ′)dr ′

proved in [CDGP] under suitable assumptions on the initial
datum.
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Strategy: inequalities

When a particle dies it is retained becoming a “ghost”.
Ghost and true particles together are independent random
walks

We thus know well the overall configuration at a time T = ε−2δ;
to get the true particles configuration we must “guess” which
are the ghosts and delete them.

N, the random number of ghosts at time T , is an independent
Poisson variable of mean jT .

Natural candidates for the ghosts:
(i) the N rightmost particles at time T
(ii) the N particles at time T which were the rightmost particles
at time 0.

They are both incorrect yet are lower and upper bounds (in a
suitable topology) which become accurate as first ε→ 0 and
then δ → 0.
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Identification of the limit (heuristics)

If j = 0 (i.e. no births and deaths):

∂ρ

∂t
=

1
2
∂2ρ

∂r2 ,
∂ρ

∂r

∣∣∣
0

=
∂ρ

∂r

∣∣∣
1

= 0

The heat equation with Neumann boundary conditions.
Adding births and deaths:

∂ρ

∂t
=

1
2
∂2ρ

∂r2 + jD0 − jDRt , r ∈ [0,Rt ]

where Dr is the Dirac delta at r .

Rt the smallest point such that ρ(r , t) = 0 for r > Rt
(supposing R0 < 1 and t small).
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(supposing R0 < 1 and t small).
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Identification of the limit (heuristics)

If j = 0 (i.e. no births and deaths):

∂ρ

∂t
=

1
2
∂2ρ

∂r2 ,
∂ρ

∂r

∣∣∣
0

=
∂ρ

∂r

∣∣∣
1

= 0
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1
2
∂2ρ
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where Dr is the Dirac delta at r .
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Replace Neumann condition by symmetry under
reflection around 0:

∂ρ

∂t
=

1
2
∂2ρ

∂r2 + 2jD0 − jDRt − jD−Rt , r ∈ [−Rt ,Rt ],

ρ(r , t) = ρ(−r , t)
ρ(Rt , t) = 0
ρ(r ,0) = ρinit(r)

For any test function φ(r , t):

−
∫
φtρ =

∫
1
2
φrrρ+ j

(
2φ(0, t)− φ(R(t), t)− φ(−R(t), t)

)
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−
∫
φtρ =

∫
1
2
φrrρ+ j

(
2φ(0, t)− φ(R(t), t)− φ(−R(t), t)

)
Classical solutions. If there is a solution ρ(r , t) which is
smooth in (0,Rt ), then (integrating by parts)

∂ρ

∂t
=

1
2
∂2ρ

∂r2 , ρ(Rt , t) = 0,
∂ρ

∂r
|r=0+ =

∂ρ

∂r
|r=R−t

= −2j

Fixed point problem: Given Rt we find ρ(r , t) which solves the
heat equation with 0 boundary conditions at ±Rt .

Determine Rt so that the derivative at Rt is equal to −2j .
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Stefan problem

Existence follows by reducing to the classical Stefan problem.
By differentiating ρ(Rt , t) = 0:

Ṙt = j−1 1
2
∂2ρ

∂r2 |r=R−t

Define: u :=
∂ρ

∂r
, then

∂u
∂t

=
1
2
∂2u
∂r2 , u(0, t) = u(Rt , t) = −j ,

with u(r ,0) =
∂ρinit

∂r
and

Ṙt = −j−1 1
2
∂u
∂r
|r=R−t

One can then check that ρ(r , t) := −
∫ Rt

r
u(r , t) solves the

original problem.
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Weak solutions, via barriers

K (δ)ρ “the cut and paste map” acting on ρ:

The mass in shaded areas are = jδ, mass on the right is moved
to the origin

K(δ)u = jδD0 + u 1r∈[0,Rδ(u)]

Rδ(u) such that
∫ 1

Rδ
u(r)dr = jδ.
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The barriers.

Gneum
δ (r , r ′) = Green function of the heat equation in [0,1] with

Neumann boundary conditions:

Gneum
t (r , r ′) =

∑
k

Gt (r , r ′k ), Gt (r , r ′) =
e−(r−r ′)2/2t
√

2πt

r ′k being the images of r ′ under repeated reflections of the
interval [0,1].

S(δ,−)
nδ (ρ) := K (δ)Gneum

δ · · ·K (δ)Gneum
δ ρ (n times)

S(δ,+)
nδ (ρ) := Gneum

δ K (δ) · · ·Gneum
δ K (δ)ρ (n times)
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Mass trasport inequalities.

Call F (r ; u) :=

∫ 1

r
u(r)dr , u ≥ 0

Definition

u ≤ v iff F (r ; u) ≤ F (r ; v), ∀r ∈ [0,1]

F (r ; u) is a non increasing function of r which starts at 0 from

the total mass of u: F (0; u) =

∫ 1

0
u(r)dr .

The graph of F (r ; u) is “the interface of u” and u ≤ v means
that the interface of v is not below the interface of u.

U = {u = cD0 + ρ, c ≥ 0, ρ ∈ L∞([0,1],R+)}
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Mass trasport inequalities.

Lemma
For any δ > 0 and any integer n

S(δ,−)
nδ (ρ) ≤ S(δ,+)

nδ (ρ)

(it is better to do the cut and paste earlier)

Actually we prove that for all δ, δ′ and t such that t = kδ = k ′δ′:

S(δ,−)
t (u) ≤ S(δ′,+)

t (u)
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Weak solution via barriers.

Definition. ρt is a weak solution in the sense of barriers if
ρ0 = u and for any δ and n:

S(δ,−)
nδ (u) ≤ ρnδ ≤ S(δ,+)

nδ (u)

Theorem
Under suitable assumption on ρinit there is a unique weak
solution ρt (in the sense of barriers) with ρ0 = ρinit.
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Hydrodynamic limit.

Theorem

Under suitable assumption on ρinit the hydro-limit ρt of ξε−2t is
the unique weak solution (in the sense of barriers).

(precise statement later)

Theorem 2. Classical solutions are weak solutions.

Work in progress. Different strategies: P.Ferrari (use
approximation via harmonic lattice maps), S. Olla (control the
limit of Sδ,± via expansion in δ) CGDP (use again inequalities
proving that the classical solution is the hydro-limit of a particle
system that is in between the barriers)
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Proofs.

ξ
(δ,−)
t is defined as :

independent random walks for t < ε−2δ;

at t = ε−2δ

cut the N− rightmost particles and add N+ particles at 0:

N± being the number of particles created and deleted in the
true process ξt for t ∈ [0, ε−2δ].

By iteration it is defined for all t = nδ.

ξ
(δ,+)
t is defined with same procedure but anticipating the cut

and paste.
namely at time 0+ we kill the n− rightmost particles and create
n+ new particles at 0 and then let evolve independently till
t ≤ ε−2δ, then iterate....
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The total number of particles

To define N± we use the random variable∣∣ξt
∣∣ = total number of particles at time t

|ξt | has the law of a random walk on N which jumps with equal
probability by ±1 after an exponential time of parameter jε, the
jumps leading to −1 being suppressed.

Nk ,+ = # upwards jumps of |ξs| for s ∈ [kε−2δ, (k + 1)ε−2δ]

Nk ,− = # downwards jumps of |ξs| for s ∈ [kε−2δ, (k + 1)ε−2δ]
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N0
k ,+, N0

k ,− independent Poisson variables with average ε−1jδ.

Nk ,+ = N0
k ,+, Nk ,− ≤ N0

k ,−

because if the independent clock rings at a time s and |ξs| = 0,
then at s there is no jump.

Definition (Assumptions on the initial particle configuration)

max
x∈[0,ε−1]

∣∣∣A`(x , ξ)−A′`(x , ρinit)
∣∣∣ ≤ εa

ρinit ∈ C([0,1],R+), ρinit(r) = 0, r ∈ [R0,1]

|εR(ξ)− R0| ≤ εa

A`(x , ξ) :=
1
`

x+`−1∑
y=x

ξ(y), A′`(x , ρ) =
1
ε`

∫ ε(x+`)

εx
ρ(r)dr
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Thus the initial number of particles |ξ0| is bounded from below

|ξ0| ≥ ε−1
∫ 1

0
ρinit(r)dr − ε−1+a ≥ ε−1C, C > 0

Lemma
Given T > 0 and γ > 0 define

G =
{
|N0

k ,+−ε
−1jδ| ≤ ε−

1
2−γ ; |N0

k ,−−ε
−1jδ| ≤ ε−

1
2−γ , ∀k ≤ δ−1T

}
In the good set G, for all k ≤ δ−1T

Nk ,+ = N0
k ,+, Nk ,− = N0

k ,−

and
P[G] ≥ 1− cnε

n
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Inequalities.

Definition

ξ ≤ ξ′ iff Fε(x ; ξ) ≤ Fε(x ; ξ′) for all x ∈ [0, ε−1]

Fε(x ; ξ) :=
∑
y≥x

ξ(y)

The process (ξt )t≥0 is stochastically ≤ than the process
(ξ′t )t≥0 if they can be realized on a same probability space
where the inequality holds pointwise (almost surely).

Theorem

ξ
(δ,−)

kε−2δ
≤ ξkε−2δ ≤ ξ

(δ,+)

kε−2δ
, for all k
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Hydrodynamic limit for the approximating processes

A`(x ; ξ) :=
1
`

x+`−1∑
y=x

ξ(y), ` = ε−b,b ∈ (0,1)

〈
ξt
〉
= expectation

Theorem
Let b be suitably close to 1and T > 0. Then for any ζ > 0 and
and n : nδ ≤ T ,

lim
ε→0

P(ε)
ξ

[
max

x∈[0,ε−1−`]
|A`(x ; ξ

(δ,±)

nε−2δ
)−A`(x ;

〈
ξ

(δ,±)

nε−2δ

〉
)| > ζ

]
= 0

lim
ε→0
〈ξ(δ,±)

nε−2δ
〉 = S(δ,±)

nδ (ρ)
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Hydrodynamic limit for the process

previous Theorem and

ξ
(δ,−)

nε−2δ
≤ ξnε−2δ ≤ ξ

(δ,+)

nε−2δ
, and lim

ε→0
〈ξ(δ,±)

nε−2δ
〉 = S(δ,±)

nδ (ρinit)

imply that
S(δ,−)

nδ (ρinit) ≤ S(δ,+)
nδ (ρinit)

Theorem
There is a unique element ρt separating the barriers:

S(δ,−)
nδ (ρinit) ≤ ρt ≤ S(δ,+)

nδ (ρinit)

Such an element is equal to the hydrodynamic limit of {ξt}.

lim
ε→0

Pξ
[

max
x∈[0,ε−1]

|εFε(x ; ξε−2t )− F (εx ; ρt )| ≤ ζ
]

= 1
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Proof (sketch).

• Monotonicity: as functions of δ, S(δ,−)
nδ (ρ) is non decreasing

and S(δ,+)
nδ (ρ) is non increasing: for all δ = kδ′,

S(δ,−)
mδ (ρ) ≤ S(δ′,−)

mδ (ρ), S(δ′,+)
mδ (ρ) ≤ S(δ,+)

mδ (ρ)

• Regularity. S(δ,+)
t (ρ), t ∈ δN is space-time equicontinuous.

• Closeness. For all t > 0

|S(δ,+)
t (u)− S(δ,−)

t (u)|1 ≤ 4jδ, for all t > 0 in δN.

| · |1 is the total variation norm

(It follows from: |K (δ)u − K (δ)v |1 ≤ |u − v |1; |K (δ)u − u| ≤ 2jδ,
|Gneum

δ u −Gneum
δ v |1 ≤ |u − v |1).
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Stationary macroscopic profiles.

0 =
1
2
∂2ρ

∂r2 , ρ(R) = 0,
∂ρ

∂r
|r=0+ =

∂ρ

∂r
|r=R− = −2j∫ 1

0
ρ = M

Figure : Stationary solution for M < j , r ∈ [0,1]

Figure : Stationary solution for M > j , r ∈ [0,1]
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Manifold of stationary macroscopic profiles.

M := {ρ(M),M > 0} one-dimensional manifold of classical
stationary solutions.

ρ(M)(r) =

{
2j(R − r), R ≤ 1
0 r > R

,

∫ 1

0
ρ(M)(r)dr = M ≤ j

ρ(M)(r) = 2j(1− r) + ρ(M)(1),

∫
ρ(M) = M > j

Rencontres de Probabilités, Rouen 2013



Stability of the manifold of stationary profiles.

Theorem

Let
∫ 1

0
ρinit(r)dr = M and ρt the hydro-limit starting from ρinit.

Then, as t →∞, ρt converges weakly to ρ(M) in the sense that

lim
t→∞

F (r ; ρt ) = F (r ; ρ(M)), ∀r ∈ [0,1]

F (r ; u) =

∫ 1

r
u(r)dr
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Proof : loss of memory.

Two initial configurations ξ and ξ̃ with |ξ| = |ξ̃| = n
ξ approximates ρinit and ξ̃ approximates ρ(M)

Coupling of the two processes {ξt} and {ξ̃t},

• For the free evolution we label the particles and consider n
independent random walks starting from x and n independent
r.w. starting from y with the rule that when particles with same
label meet they stick together then after.

• Births are easy since the position of the born particles is the
origin for both processes and so they stick together forever.

• For the deaths there is a way to relabel the particles so that
the distance between the position of particles with same label
decreases.
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Super-hydrodynamic limit

Hydrodynamic limit: ξε−2t → ρt in the limit ε→ 0 keeping t fixed.

ρt → ρ(M) in the limit t →∞

Interchange of limits in not allowed!.
There is a second time scale.

Total number |ξt | of particles at time t performs a symmetric
random walk with jumps by ±1 at rate εj .

The density ε|ξt | changes after times of the order ε−3.
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Brownian motion on the manifold of stationary profiles

Theorem
Let Mε

t := ε|ξε−3t | then for any r ∈ [0,1] and any t > 0,

lim
ε→0

P(ε)
ξ

[
sup

r∈[0,1]

|εFε(r ; ξε−3t )− F (r ; ρ(Mε
t ))| ≤ ζ

]
= 1

Moreover Mε
t converges in law as ε→ 0 to a brownian motion

on R+ with reflecting boundary conditions at 0.
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