Stochastic particle systems, hydrodynamic limits and free boundary problems.

Anna De Masi
Università di L'Aquila

Rencontres de Probabilités, Rouen 2013

Hydrodynamic limit for stochastic particle systems confined in a region.
PDE's have to be complemented with the boundary conditions.
> - Boundary effects are determined by the forces acting to keep the system confined in a bounded region. Most studied case: boundary forces are due to reservoirs which fix the densities at the boundaries.
> - Free boundary problems: region confining the system is determined by the state of the system itself.

Macroscopic theory and examples of microscopic models.

Hydrodynamic limit for stochastic particle systems confined in a region.

PDE's have to be complemented with the boundary conditions.

- Boundary effects are determined by the forces acting to keep the system confined in a bounded region.
Most studied case: boundary forces are due to reservoirs which fix the densities at the boundaries.
- Free boundary problems: region confining the system is determined by the state of the system itself.

Macroscopic theory and examples of microscopic models.

Hydrodynamic limit for stochastic particle systems confined in a region.

PDE's have to be complemented with the boundary conditions.

- Boundary effects are determined by the forces acting to keep the system confined in a bounded region.
Most studied case: boundary forces are due to reservoirs which fix the densities at the boundaries.
- Free boundary problems: region confining the system is determined by the state of the system itself.

Macroscopic theory and examples of microscopic models.

Hydrodynamic limit for stochastic particle systems confined in a region.
PDE's have to be complemented with the boundary conditions.

- Boundary effects are determined by the forces acting to keep the system confined in a bounded region.
Most studied case: boundary forces are due to reservoirs which fix the densities at the boundaries.
- Free boundary problems: region confining the system is determined by the state of the system itself.

Macroscopic theory and examples of microscopic models.

Hydrodynamic limit for stochastic particle systems confined in a region.
PDE's have to be complemented with the boundary conditions.

- Boundary effects are determined by the forces acting to keep the system confined in a bounded region.
Most studied case: boundary forces are due to reservoirs which fix the densities at the boundaries.
- Free boundary problems: region confining the system is determined by the state of the system itself.

Macroscopic theory and examples of microscopic models.

Macroscopic theory

The systems are continuum bodies confined in a region Ω, each point $r \in \Omega$ is representative of a large microscopic system.

```
I will consider only one dimension and systems with a unique
order parameter (density).
Macroscopic states are non negative L' (}\Omega)\mathrm{ functions }\rho(r
r}\Omega\mathrm{ (the summability assumption ensures that the total mass
\int\rho(r) is well defined.)
Postulate: the thermodynamics of the system is determined by
a free energy functional F(\rho).
```

Equilibrium thermodynamical states are the minima of the free energy functional

Macroscopic theory

The systems are continuum bodies confined in a region Ω, each point $r \in \Omega$ is representative of a large microscopic system. I will consider only one dimension and systems with a unique order parameter (density).

> Macroscopic states are non negative $L^{1}(\Omega)$ functions $\rho(r)$ $r \in \Omega$ (the summability assumption ensures that the total mass $\int p(r)$ is well defined.) Postulate: the thermodynamics of the system is determined by a free energy functional $F(\rho)$.

Equilibrium thermodynamical states are the minima of the free energy functional

Macroscopic theory

The systems are continuum bodies confined in a region Ω, each point $r \in \Omega$ is representative of a large microscopic system.

I will consider only one dimension and systems with a unique order parameter (density).
Macroscopic states are non negative $L^{1}(\Omega)$ functions $\rho(r)$ $r \in \Omega$ (the summability assumption ensures that the total mass $\int_{\Omega} \rho(r)$ is well defined.)
Postulate: the thermodynamics of the system is determined by a free energy functional $F(\rho)$.

Equilibrium thermodynamical states are the minima of the free energy functional

Macroscopic theory

The systems are continuum bodies confined in a region Ω, each point $r \in \Omega$ is representative of a large microscopic system.
I will consider only one dimension and systems with a unique order parameter (density).
Macroscopic states are non negative $L^{1}(\Omega)$ functions $\rho(r)$ $r \in \Omega$ (the summability assumption ensures that the total mass $\int_{\Omega} \rho(r)$ is well defined.)
Postulate: the thermodynamics of the system is determined by a free energy functional $F(\rho)$.

Equilibrium thermodynamical states are the minima of the free energy functional

Macroscopic theory: evolution

The first equation is the law of conservation of mass:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}
$$

with $J=J(r, t)$ the current.
The above continuity equation has to be complemented with a constitutive equation for the current. The choice is finalized to ensure decrease of the free energy:

$\kappa(\rho)>0$ is a model dependent coefficient called mobility.

Macroscopic theory: evolution

The first equation is the law of conservation of mass:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}
$$

with $J=J(r, t)$ the current.
The above continuity equation has to be complemented with a constitutive equation for the current. The choice is finalized to ensure decrease of the free energy:

$\kappa(\rho)>0$ is a model dependent coefficient called mobility.

Macroscopic theory: evolution

The first equation is the law of conservation of mass:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}
$$

with $J=J(r, t)$ the current.
The above continuity equation has to be complemented with a constitutive equation for the current. The choice is finalized to ensure decrease of the free energy:

$$
J=-\kappa(\rho) \frac{\partial}{\partial r}\left(\frac{\delta F(\rho)}{\delta \rho(r)}\right)
$$

$\kappa(\rho)>0$ is a model dependent coefficient called mobility.

Macroscopic theory: periodic boundary conditions

Remark: with periodic b.c. we avoid interaction with walls!

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial}{\partial r}\left(\frac{\delta F(\rho)}{\delta \rho(r)}\right), \quad r \in \Omega
$$

Assume Ω is the unit circle, then the total mass is conserved

and the free energy is monotone non increasing

(integrating by parts and using periodicity)

Macroscopic theory: periodic boundary conditions

Remark: with periodic b.c. we avoid interaction with walls!

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial}{\partial r}\left(\frac{\delta F(\rho)}{\delta \rho(r)}\right), \quad r \in \Omega
$$

Assume Ω is the unit circle, then the total mass is conserved

and the free energy is monotone non increasing

(integrating by parts and using periodicity)

Macroscopic theory: periodic boundary conditions

Remark: with periodic b.c. we avoid interaction with walls!

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial}{\partial r}\left(\frac{\delta F(\rho)}{\delta \rho(r)}\right), \quad r \in \Omega
$$

Assume Ω is the unit circle, then the total mass is conserved

$$
\frac{d}{d t} \int_{\Omega} \rho(r, t) d r=0
$$

and the free energy is monotone non increasing

$$
\frac{d F(\rho(\cdot, t))}{d t}=\int_{\Omega} \frac{\delta F(\rho)}{\delta \rho(r)} \frac{\partial \rho}{\partial t} d r=-\int_{\Omega} \kappa\left(\frac{\partial}{\partial r} \frac{\delta F(\rho)}{\delta \rho(r)}\right)^{2} d r \leq 0
$$

(integrating by parts and using periodicity)

Macroscopic theory: periodic boundary conditions.

 Example.Free energy is the entropy: $F(\rho)=\int_{\Omega} f(\rho(r)) d r$

$$
f(\rho)=\rho \log \rho+(1-\rho) \log (1-\rho)
$$

Its gradient flow is

which, with the choice $\kappa(\rho)=\frac{1}{2} \rho(1-\rho)$ becomes the heat equation

Macroscopic theory: periodic boundary conditions.

Example.

Free energy is the entropy: $F(\rho)=\int_{\Omega} f(\rho(r)) d r$

$$
f(\rho)=\rho \log \rho+(1-\rho) \log (1-\rho)
$$

Its gradient flow is

which, with the choice $\kappa(\rho)=\frac{1}{2} \rho(1-\rho)$ becomes the heat equation

Macroscopic theory: periodic boundary conditions.

 Example.Free energy is the entropy: $F(\rho)=\int_{\Omega} f(\rho(r)) d r$

$$
f(\rho)=\rho \log \rho+(1-\rho) \log (1-\rho)
$$

Its gradient flow is

$$
\frac{d \rho}{d t}=\frac{d}{d r}\left(\kappa(\rho) \frac{d}{d r} \log \frac{\rho}{1-\rho}\right)
$$

which, with the choice $\kappa(\rho)=\frac{1}{2} \rho(1-\rho)$ becomes the heat equation

Macroscopic theory: periodic boundary conditions.

 Example.Free energy is the entropy: $F(\rho)=\int_{\Omega} f(\rho(r)) d r$

$$
f(\rho)=\rho \log \rho+(1-\rho) \log (1-\rho)
$$

Its gradient flow is

$$
\frac{d \rho}{d t}=\frac{d}{d r}\left(\kappa(\rho) \frac{d}{d r} \log \frac{\rho}{1-\rho}\right)
$$

which, with the choice $\kappa(\rho)=\frac{1}{2} \rho(1-\rho)$ becomes the heat equation

$$
\frac{d \rho}{d t}=\frac{1}{2} \frac{d^{2} \rho}{d r^{2}}, \quad r \in \Omega
$$

Microscopic model for the example (periodic boundary conditions)

Symmetric exclusion process on $\Lambda_{\varepsilon}:=\varepsilon^{-1} \Omega \cap \mathbb{Z}, \Omega$ the circle.
$\left\{\eta_{t}(x) \in\{0,1\}, x \in \Lambda_{\varepsilon}, t \geq 0\right\}$ is the process with generator:

$$
L_{0} f(\eta)=\frac{1}{2} \sum_{x \in \Lambda_{\varepsilon}} \sum_{y:|y-x|=1}\left(f\left(\eta^{(x, y)}\right)-f(\eta)\right)
$$

Invariant measures are ν_{p} product of Bernoulli, formally given by the Gibbs formula

The mobility is

Microscopic model for the example (periodic boundary conditions)

Symmetric exclusion process on $\Lambda_{\varepsilon}:=\varepsilon^{-1} \Omega \cap \mathbb{Z}, \Omega$ the circle.
$\left\{\eta_{t}(x) \in\{0,1\}, x \in \Lambda_{\varepsilon}, t \geq 0\right\}$ is the process with generator:

$$
L_{0} f(\eta)=\frac{1}{2} \sum_{x \in \Lambda_{\varepsilon}} \sum_{y:|y-x|=1}\left(f\left(\eta^{(x, y)}\right)-f(\eta)\right)
$$

Invariant measures are ν_{ρ} product of Bernoulli, formally given by the Gibbs formula

$$
\nu_{\rho}(\eta)=\prod_{x} \exp \left\{\frac{1}{2}[\eta(x) \log \rho+(1-\eta(x) \log (1-\rho)]\}\right.
$$

The mobility is

Microscopic model for the example (periodic boundary conditions)

Symmetric exclusion process on $\Lambda_{\varepsilon}:=\varepsilon^{-1} \Omega \cap \mathbb{Z}, \Omega$ the circle.
$\left\{\eta_{t}(x) \in\{0,1\}, x \in \Lambda_{\varepsilon}, t \geq 0\right\}$ is the process with generator:

$$
L_{0} f(\eta)=\frac{1}{2} \sum_{x \in \Lambda_{\varepsilon}} \sum_{y:|y-x|=1}\left(f\left(\eta^{(x, y)}\right)-f(\eta)\right)
$$

Invariant measures are ν_{ρ} product of Bernoulli, formally given by the Gibbs formula

$$
\nu_{\rho}(\eta)=\prod_{x} \exp \left\{\frac{1}{2}[\eta(x) \log \rho+(1-\eta(x) \log (1-\rho)]\}\right.
$$

The mobility is

$$
\kappa(\rho)=\frac{1}{2} \sum_{x} \nu_{\rho}(\eta(0)[\eta(x)-\rho])=\frac{1}{2} \rho(1-\rho)
$$

Symmetric exclusion process: hydrodynamic limit (periodic boundary conditions)

$\Lambda_{\varepsilon}:=\varepsilon^{-1} \Omega \cap \mathbb{Z}, \Omega$ the circle.
Order parameter (empirical averages): $\ell=\varepsilon^{-b}, b \in(0,1)$

$$
\mathcal{M}_{\ell}(r, \eta):=\frac{1}{\ell} \sum_{x:\left|x-\varepsilon^{-1} r\right| \leq \ell} \eta(x), \quad r \in \Omega
$$

Initial conditions: $\rho_{0}(r) \geq 0 r \in \Omega$ fixed. The law of η_{0}
approximates the initial profile ρ_{0}

$$
\lim _{\varepsilon \rightarrow 0} P\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{0}\right)-\rho_{0}(r)\right| \leq \varepsilon^{a}\right)=1
$$

$a>0$ small.

Symmetric exclusion process: hydrodynamic limit (periodic boundary conditions)

$\Lambda_{\varepsilon}:=\varepsilon^{-1} \Omega \cap \mathbb{Z}, \Omega$ the circle.
Order parameter (empirical averages): $\ell=\varepsilon^{-b}, b \in(0,1)$

$$
\mathcal{M}_{\ell}(r, \eta):=\frac{1}{\ell} \sum_{x:\left|x-\varepsilon^{-1} r\right| \leq \ell} \eta(x), \quad r \in \Omega
$$

Initial conditions: $\rho_{0}(r) \geq 0 r \in \Omega$ fixed. The law of η_{0} approximates the initial profile ρ_{0}

$$
\lim _{\varepsilon \rightarrow 0} P\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{0}\right)-\rho_{0}(r)\right| \leq \varepsilon^{a}\right)=1
$$

$a>0$ small.

Symmetric exclusion process: hydrodynamic limit (periodic boundary conditions)

Theorem

Given any $T>0$, for all $t \leq T$

$$
\lim _{\varepsilon \rightarrow 0} P\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{\varepsilon^{-2} t}\right)-\rho(r, t)\right| \leq \varepsilon^{a}\right)=1
$$

with $\rho(r, t)$ solution of the heat equation:

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r}, \quad r \in \Omega
$$

with initial condition $\rho(r, 0)=\rho_{0}$.

Stirring.

At each pair of n.n. sites Poisson clock of intensity $\frac{1}{2}$,

when it rings exchange the occupation numbers.

Symmetric exclusion process: Fick's law (periodic boundary conditions)

The macroscopic current $J(r, t)$ satisfies the Fick's law:

$$
J(r, t)=-\frac{1}{2} \frac{\partial \rho(r, t)}{\partial r}
$$

Microscopic current is the expected signed mass crossing a point $x+\frac{1}{2}$ per unit time (from the left minus that from the right)

$$
j\left(x, \eta_{t}\right):=\frac{1}{2}\left[\eta_{t}(x)-\eta_{t}(x+1)\right]
$$

[•] the integer part, $r \in \Omega$ and $t \leq T$

At equilibrium current=0.

Symmetric exclusion process: Fick's law (periodic boundary conditions)

The macroscopic current $J(r, t)$ satisfies the Fick's law:

$$
J(r, t)=-\frac{1}{2} \frac{\partial \rho(r, t)}{\partial r}
$$

Microscopic current is the expected signed mass crossing a point $x+\frac{1}{2}$ per unit time (from the left minus that from the right).

$$
j\left(x, \eta_{t}\right):=\frac{1}{2}\left[\eta_{t}(x)-\eta_{t}(x+1)\right]
$$

[.] the integer part, $r \in \Omega$ and $t \leq T$

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \mathbb{E}\left(j\left(\left[\varepsilon^{-1} r\right], \eta_{\varepsilon^{-2} t}\right)\right)=-\frac{1}{2} \frac{\partial \rho(r, t)}{\partial r}
$$

At equilibrium current=0.

Symmetric exclusion process: Fick's law (periodic boundary conditions)

The macroscopic current $J(r, t)$ satisfies the Fick's law:

$$
J(r, t)=-\frac{1}{2} \frac{\partial \rho(r, t)}{\partial r}
$$

Microscopic current is the expected signed mass crossing a point $x+\frac{1}{2}$ per unit time (from the left minus that from the right).

$$
j\left(x, \eta_{t}\right):=\frac{1}{2}\left[\eta_{t}(x)-\eta_{t}(x+1)\right]
$$

[.] the integer part, $r \in \Omega$ and $t \leq T$

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \mathbb{E}\left(j\left(\left[\varepsilon^{-1} r\right], \eta_{\varepsilon^{-2}} t\right)\right)=-\frac{1}{2} \frac{\partial \rho(r, t)}{\partial r}
$$

At equilibrium current $=0$.

Open systems

Open means that the system is in contact with the "outside".
"Typical example": a metal bar cooled at one end and warmed at the other, the two extremes being kept at two different temperatures $T_{+}>T_{-}$.

In our set up we consider densities, so the system is in contact with two reservoirs that keep the densities equal to ρ_{1} in one side and to ρ_{2} in the other side.

Macroscopic theory: Dirichlet boundary conditions

$\Omega=[0,1]$ and $F(\rho)=\int_{\Omega} f(\rho(r)) d r$ is the free energy.
Natural to complement the equation with Dirichlet b. c.:

$$
\rho(0, t)=\rho_{0}, \quad \rho(1, t)=\rho_{1}, \quad \rho(r, 0) \text { given }
$$

The total mass is not conserved:

The free energy is not monotone:

Macroscopic theory: Dirichlet boundary conditions

$\Omega=[0,1]$ and $F(\rho)=\int_{\Omega} f(\rho(r)) d r$ is the free energy.
Natural to complement the equation with Dirichlet b. c.:

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial f^{\prime}(\rho)}{\partial r}, \quad r \in(0,1) \\
\rho(0, t)=\rho_{0}, \quad \rho(1, t)=\rho_{1}, \quad \rho(r, 0) \text { given }
\end{array}
$$

The total mass is not conserved:

The free energy is not monotone:

Macroscopic theory: Dirichlet boundary conditions

$\Omega=[0,1]$ and $F(\rho)=\int_{\Omega} f(\rho(r)) d r$ is the free energy.
Natural to complement the equation with Dirichlet b. c.:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa\left(\rho \frac{\partial f^{\prime}(\rho)}{\partial r}, \quad r \in(0,1)\right. \\
& \rho(0, t)=\rho_{0}, \quad \rho(1, t)=\rho_{1}, \quad \rho(r, 0) \text { given }
\end{aligned}
$$

The total mass is not conserved:

$$
\frac{d}{d t} \int_{0}^{1} \rho(r, t) d r=J(0, t)-J(1, t)
$$

The free energy is not monotone:

Macroscopic theory: Dirichlet boundary conditions

$\Omega=[0,1]$ and $F(\rho)=\int_{\Omega} f(\rho(r)) d r$ is the free energy.
Natural to complement the equation with Dirichlet b. c.:

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial f^{\prime}(\rho)}{\partial r}, \quad r \in(0,1) \\
\rho(0, t)=\rho_{0}, \quad \rho(1, t)=\rho_{1}, \quad \rho(r, 0) \text { given }
\end{gathered}
$$

The total mass is not conserved:

$$
\frac{d}{d t} \int_{0}^{1} \rho(r, t) d r=J(0, t)-J(1, t)
$$

The free energy is not monotone:

$$
\frac{d F(\rho(\cdot, t))}{d t}=J(0, t) f^{\prime}\left(\rho_{0}\right)-J(1, t) f^{\prime}\left(\rho_{1}\right)-\int_{0}^{1} \kappa(\rho)\left(\frac{\partial f^{\prime}(\rho(r, t)}{\partial r}\right)^{2} d r
$$

Macroscopic theory: Dirichlet boundary conditions

Law of thermodynamics: the free energy is monotone non increasing.

Interpretation: the reservoir connected at 0 send in a mass $X_{0}(t)$, the reservoir connected at 1 remove a mass $X_{1}(t)$.
$\Lambda_{0}=$ region occupied by the left reservoir, $\Lambda_{1}=$ region occupied by the right reservoir

Assume: $\left|\wedge_{0}\right|$ and ' $\wedge_{1} \mid$ very large and that the reservoirs "instantaneously" homogeinize any change of mass

Macroscopic theory: Dirichlet boundary conditions

Law of thermodynamics: the free energy is monotone non increasing.

$$
\begin{gathered}
\int_{0}^{1} \rho(r, t) d r=\int_{0}^{1} \rho_{0}(r) d r+X_{0}(t)-X_{1}(t) \\
X_{0}(t)=\int_{0}^{t} J(0, s) d s, \quad X_{1}(t)=\int_{0}^{t} J(1, s) d s
\end{gathered}
$$

Interpretation: the reservoir connected at 0 send in a mass $X_{0}(t)$, the reservoir connected at 1 remove a mass $X_{1}(t)$.
$\Lambda_{0}=$ region occupied by the left reservoir, $\Lambda_{1}=$ region occupied by the right reservoir

Assume: $\left|\Lambda_{0}\right|$ and $\left|\Lambda_{1}\right|$ very large and that the reservoirs "instantaneously" homogeinize any change of mass

Macroscopic theory: Dirichlet boundary conditions

Law of thermodynamics: the free energy is monotone non increasing.

$$
\begin{gathered}
\int_{0}^{1} \rho(r, t) d r=\int_{0}^{1} \rho_{0}(r) d r+X_{0}(t)-X_{1}(t) \\
X_{0}(t)=\int_{0}^{t} J(0, s) d s, \quad X_{1}(t)=\int_{0}^{t} J(1, s) d s
\end{gathered}
$$

Interpretation: the reservoir connected at 0 send in a mass $X_{0}(t)$, the reservoir connected at 1 remove a mass $X_{1}(t)$.
$\Lambda_{0}=$ region occupied by the left reservoir, $\Lambda_{1}=$ region occupied by the right reservoir

Assume: $\left|\Lambda_{0}\right|$ and $\left|\Lambda_{1}\right|$ very large and that the reservoirs "instantaneously" homogeinize any change of mass

Macroscopic theory: Dirichlet boundary conditions

Law of thermodynamics: the free energy is monotone non increasing.

$$
\begin{gathered}
\int_{0}^{1} \rho(r, t) d r=\int_{0}^{1} \rho_{0}(r) d r+X_{0}(t)-X_{1}(t) \\
X_{0}(t)=\int_{0}^{t} J(0, s) d s, \quad X_{1}(t)=\int_{0}^{t} J(1, s) d s
\end{gathered}
$$

Interpretation: the reservoir connected at 0 send in a mass $X_{0}(t)$, the reservoir connected at 1 remove a mass $X_{1}(t)$.
$\Lambda_{0}=$ region occupied by the left reservoir, $\Lambda_{1}=$ region occupied by the right reservoir

Assume: $\left|\Lambda_{0}\right|$ and $\left|\Lambda_{1}\right|$ very large and that the reservoirs "instantaneously" homogeinize any change of mass

Macroscopic theory: Dirichlet boundary conditions

Left reservoir: at $\mathrm{t}=0$ has density ρ_{0}, at time t has density

$$
\rho_{0}-\frac{X_{0}(t)}{\left|\Lambda_{0}\right|} \approx \rho_{0}
$$

$\underline{\text { Right reservoir: at time } t \text { has density } \rho_{1}+\frac{X_{1}(t)}{\left|\Lambda_{1}\right|} \approx \rho_{1}, ~}$
The free energies at time t are

Macroscopic theory: Dirichlet boundary conditions

Left reservoir: at $\mathrm{t}=0$ has density ρ_{0}, at time t has density

$$
\rho_{0}-\frac{X_{0}(t)}{\left|\Lambda_{0}\right|} \approx \rho_{0}
$$

$\underline{\text { Right reservoir: at time } t \text { has density } \rho_{1}+\frac{X_{1}(t)}{\left|\Lambda_{1}\right|} \approx \rho_{1}, ~}$
The free energies at time t are

$$
\begin{aligned}
& F_{\Lambda_{0}, t}=\left|\Lambda_{0}\right| f\left(\rho_{0}-\frac{X_{0}(t)}{\left|\Lambda_{0}\right|}\right) \approx F_{\Lambda_{0}, 0}-f^{\prime}\left(\rho_{0}\right) X_{0}(t) \\
& F_{\Lambda_{1}, t}=\left|\Lambda_{1}\right| f\left(\rho_{1}-\frac{X_{1}(t)}{\left|\Lambda_{1}\right|}\right) \approx F_{\Lambda_{1}, 0}+f^{\prime}\left(\rho_{1}\right) X_{1}(t)
\end{aligned}
$$

The total free energy

$$
\begin{aligned}
F^{\text {total }} & =F(\rho(\cdot, t))+F_{\Lambda_{0}, t}+F_{\Lambda_{1}, t} \\
& \approx F(\rho(\cdot, t))+F_{\Lambda_{0}, 0}-f^{\prime}\left(\rho_{0}\right) J(0, t)+F_{\Lambda_{1}, 0}+f^{\prime}\left(\rho_{1}\right) J(1, t)
\end{aligned}
$$

is monotone non increasing:

$$
\begin{aligned}
\frac{d F^{\text {total }}}{d t} & =\frac{d F(\rho(\cdot, t))}{d t}-f^{\prime}\left(\rho_{0}\right) X_{0}(t)+f^{\prime}\left(\rho_{1}\right) X_{1}(t) \\
& =-\int_{0}^{1} \kappa(\rho)\left(\frac{\partial f^{\prime}(\rho(r, t)}{\partial r}\right)^{2} d r
\end{aligned}
$$

Symmetric exclusion process: density reservoirs

SSEP in $\Lambda_{\varepsilon}=\left[0, \varepsilon^{-1}\right] \cap \mathbb{Z}=\{0,1, \ldots, N\}, \quad \mathbf{N}=\left[\varepsilon^{-1}\right]$.
Put two independent Poisson clocks of intensity $\frac{1}{2}$ at the pairs $(-1,0)$ and $(N, N+1)$.
When it rings at $(N, N+1)$ put a particle at N with prob. ρ_{1},
$\eta(N)=0$ with probability $1-\rho_{1}, \quad \eta(N)=1$ with probability ρ_{1} and analogously if it rings at $(-1,0)$
$\eta(0)=0$ with probability $1-\rho_{0}, \quad \eta(N)=1$ with probability ρ_{0}

Symmetric exclusion process: density reservoirs

Generator $L=L_{0}+L^{\prime}, L_{0}$ stirring

where $1 \geq \rho_{1}>\rho_{0} \geq 0$

Symmetric exclusion process: density reservoirs

Generator $L=L_{0}+L^{\prime}, L_{0}$ stirring

$$
\begin{aligned}
L^{\prime} f(\eta) & =\rho_{1}\left[f\left(\eta^{(+, N)}\right)-f(\eta)\right]+\left(1-\rho_{1}\right)\left[f\left(\eta^{(-, N)}\right)-f(\eta)\right] \\
& +\rho_{0}\left[f\left(\eta^{(+, 0)}\right)-f(\eta)\right]+\left(1-\rho_{0}\right)\left[f\left(\eta^{(-, 0)}\right)-f(\eta)\right]
\end{aligned}
$$

where $1 \geq \rho_{1}>\rho_{0} \geq 0$

$$
\begin{array}{ll}
\eta^{+, x}(x)=1, & \eta^{+, x}(y)=\eta(y), y \neq x \\
\eta^{-, x}(x)=0, & \eta^{-, x}(y)=\eta(y), y \neq x
\end{array}
$$

Symmetric exclusion process: density reservoirs

By duality:
$\mathbb{E}\left(\eta_{t}(x)\right)=\sum_{y \in \Lambda_{\varepsilon}} p_{t}^{0}(x, y) \mathbb{E}\left(\eta_{0}(x)\right)+q_{t}(x,-1) \rho_{0}+q_{t}(x, N+1) \rho_{1}$
$p_{t}^{0}(x, y)$ is the probability a random walk goes from x to y in a time t without ever touching -1 and $N+1$
$q_{t}(x,-1)$ is the probability to reach -1 before $N+1$ within t.
$q_{t}(x, N+1)$ is the probability to reach $N+1$ before -1 within t.

Assume that the law of η_{0} approximates an initial profile

Symmetric exclusion process: density reservoirs

By duality:
$\mathbb{E}\left(\eta_{t}(x)\right)=\sum_{y \in \Lambda_{\varepsilon}} p_{t}^{0}(x, y) \mathbb{E}\left(\eta_{0}(x)\right)+q_{t}(x,-1) \rho_{0}+q_{t}(x, N+1) \rho_{1}$
$p_{t}^{0}(x, y)$ is the probability a random walk goes from x to y in a time t without ever touching -1 and $N+1$
$q_{t}(x,-1)$ is the probability to reach -1 before $N+1$ within t.
$q_{t}(x, N+1)$ is the probability to reach $N+1$ before -1 within t.

Assume that the law of η_{0} approximates an initial profile $\rho_{0}(r) \geq 0, r \in(0,1)$.

Symmetric exclusion process: hydrodynamic limit (density reservoirs)

Theorem

Given any $T>0$, for all $t \leq T$

$$
\lim _{\varepsilon \rightarrow 0} P\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{\varepsilon^{-2} t}\right)-\rho(r, t)\right| \leq \varepsilon^{a}\right)=1
$$

with $\rho(r, t)$ solution of the heat equation: $\rho(r, 0)=\rho_{0}(r)$ and

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad r \in(0,1)
$$

with Dirichlet b.c. $\rho(0, t)=\rho_{0}, \rho(1, t)=\rho_{1}$.

$$
\rho(r, t)=\int G_{t}^{0}(r, z) \rho(z, 0) d z+Q_{t}(r, 0) \rho_{0}+Q_{t}(r, 1) \rho_{1}
$$

SEP: stationary non equilibrium state, Fick's law (density reservoirs)

The unique invariant measure μ_{ε} is such that for any $x \in \Lambda_{\varepsilon}$

$$
\lim _{\varepsilon \rightarrow 0, \varepsilon x \rightarrow r} \mu_{\varepsilon}(\eta(x))=\left(\rho_{1}-\rho_{0}\right) r+\rho_{0}
$$

Microscopic current and Fick's law

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \mu_{\varepsilon}(\eta(x)-\eta(x+1))=\rho_{1}-\rho_{0}
$$

Some of the references.
T. Bodineau, B. Derrida, J. Lebowitz (2010)
T. Bodineau, B. Derrida (2006)
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim
(2001,..., 2006)
J. Farfan, C. Landim, M. Mourragui, (2011),
B. Derrida, J.L. Lebowitz, E.R. Speer (2001)
G. Schütz, E. Domany (1993)
G. Eyink, J.L. Lebowitz, H. Spohn (1991)
H. Spohn (1983)
A. Galves, C. Kipnis, C. Marchioro, E. Presutti (1981)

Macroscopic theory: current reservoirs

Open system: $\Omega=[0,1]$, free energy $F(\rho)=\int_{0}^{1} f(\rho(r)) d r$

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial f^{\prime}(\rho)}{\partial r} \quad r \in(0,1)
$$

Current reservoirs force a flux of mass into the system (without freezing the order parameter at the endpoints).
A current reservoir of parameter $j \in \mathbb{R}$ is such that the currents
at the endpoints are:
where $\lambda(\rho)$ is a model dependent, mobility parameter not necessarily equal to the bulk mobility $\kappa(\rho)$.
As we will see the case $\lambda \equiv 1$ corresponds to free boundary
motion.

Macroscopic theory: current reservoirs

Open system: $\Omega=[0,1]$, free energy $F(\rho)=\int_{0}^{1} f(\rho(r)) d r$

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial f^{\prime}(\rho)}{\partial r} \quad r \in(0,1)
$$

Current reservoirs force a flux of mass into the system (without freezing the order parameter at the endpoints).

A current reservoir of parameter $j \in \mathbb{R}$ is such that the currents at the endpoints are:

$$
J(0, t)=j \lambda(\rho(0, t)) \quad J(1, t)=j \lambda(\rho(1, t))
$$

where $\lambda(\rho)$ is a model dependent, mobility parameter not necessarily equal to the bulk mobility $\kappa(\rho)$.
As we will see the case $\lambda \equiv 1$ corresponds to free boundary
motion.

Macroscopic theory: current reservoirs

Open system: $\Omega=[0,1]$, free energy $F(\rho)=\int_{0}^{1} f(\rho(r)) d r$

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial J}{\partial r}, \quad J=-\kappa(\rho) \frac{\partial f^{\prime}(\rho)}{\partial r} \quad r \in(0,1)
$$

Current reservoirs force a flux of mass into the system (without freezing the order parameter at the endpoints).

A current reservoir of parameter $j \in \mathbb{R}$ is such that the currents at the endpoints are:

$$
J(0, t)=j \lambda(\rho(0, t)) \quad J(1, t)=j \lambda(\rho(1, t))
$$

where $\lambda(\rho)$ is a model dependent, mobility parameter not necessarily equal to the bulk mobility $\kappa(\rho)$.
As we will see the case $\lambda \equiv 1$ corresponds to free boundary motion.

Macroscopic theory: current reservoirs

A flux of mass $J(0, t)$ enters into the system at the point 0 , a flux of mass $J(1, t)$ leaves the system at the point 1.

Change of energy in 0 during the time interval $(t, t+d t)$ is
$E_{0} d t:=f(\rho(0, t)+J(0, t) d t)-f(\rho(0, t)) \approx f^{\prime}(\rho(0, t)) J(0, t) d t$
Analogously
$E_{1} d t=f(\rho(1, t)-J(1, t) d t)-f(\rho(1, t)) \approx-f^{\prime}(\rho(1, t)) J(1, t) d t$

Thus the total change of free energy is

Macroscopic theory: current reservoirs

A flux of mass $J(0, t)$ enters into the system at the point 0 , a flux of mass $J(1, t)$ leaves the system at the point 1.

Change of energy in 0 during the time interval $(t, t+d t)$ is

$$
E_{0} d t:=f(\rho(0, t)+J(0, t) d t)-f(\rho(0, t)) \approx f^{\prime}(\rho(0, t)) J(0, t) d t
$$

Analogously

$$
E_{1} d t=f(\rho(1, t)-J(1, t) d t)-f(\rho(1, t)) \approx-f^{\prime}(\rho(1, t)) J(1, t) d t
$$

Thus the total change of free energy is

Macroscopic theory: current reservoirs

A flux of mass $J(0, t)$ enters into the system at the point 0 , a flux of mass $J(1, t)$ leaves the system at the point 1.

Change of energy in 0 during the time interval $(t, t+d t)$ is

$$
E_{0} d t:=f(\rho(0, t)+J(0, t) d t)-f(\rho(0, t)) \approx f^{\prime}(\rho(0, t)) J(0, t) d t
$$

Analogously

$$
E_{1} d t=f(\rho(1, t)-J(1, t) d t)-f(\rho(1, t)) \approx-f^{\prime}(\rho(1, t)) J(1, t) d t
$$

Thus the total change of free energy is

$$
\frac{d}{d t} F^{\mathrm{tot}}(\rho(\cdot, t))=\frac{d}{d t} \int_{0}^{1} f(\rho(r, t)) d r-E_{1}-E_{0}
$$

Symmetric exclusion process: current reservoirs

SEP in $\Lambda_{\varepsilon}=[-N, N] \cap \mathbb{Z}, N=\varepsilon^{-1}$.
Impose a macroscopic current $j>0$ by sending in particles
from the right at rate $\frac{j}{N}$ and taking out particles from the left at the same rate.

Symmetric exclusion process: current reservoirs

SEP in $\Lambda_{N}=[-N, N] \cap \mathbb{Z}$.
As we want the boundary processes localized at the boundaries we fix two intervals $I_{ \pm}$of length K at the boundaries

we send in particles (at rate $\frac{j}{N}$) only in I_{+}and take out particles only from I_.

If I_{+}is already full or I_{-}empty, then our mechanisms abort.

DM, Presutti, Tsagkarogiannis, Vares (DPTV)

Symmetric exclusion process: current reservoirs

Generator: $L=L_{0}+\frac{\mathbf{j}}{\mathbf{2 N}} L_{b}, \quad L_{0}$ stirring generator, $L_{b}=L_{b,+}+L_{b,-}$ describes births and deaths near the boundaries:

$$
L_{b, \pm} f(\eta):=\sum_{x \in I_{ \pm}} D_{ \pm} \eta(x)\left[f\left(\eta^{(x)}\right)-f(\eta)\right]
$$

$$
D_{+} \eta(x)=(1-\eta(x)) \eta(x+1) \cdots \eta(N)
$$

$D_{-} \eta(x)=\eta(x)(1-\eta(x-1)) \cdots(1-\eta(-N))$
$\eta^{(x)}$ obtained from η by changing the occupation number at x.

Symmetric exclusion process: current reservoirs

Generator: $L=L_{0}+\frac{\mathbf{j}}{\mathbf{2 N}} L_{b}, \quad L_{0}$ stirring generator, $L_{b}=L_{b,+}+L_{b,-}$ describes births and deaths near the boundaries:

$$
\begin{aligned}
& L_{b, \pm} f(\eta):=\sum_{x \in I_{ \pm}} D_{ \pm} \eta(x)\left[f\left(\eta^{(x)}\right)-f(\eta)\right] \\
& D_{+} \eta(x)=(1-\eta(x)) \eta(x+1) \cdots \eta(N) \\
& D_{-} \eta(x)=\eta(x)(1-\eta(x-1)) \cdots(1-\eta(-N))
\end{aligned}
$$

Symmetric exclusion process: current reservoirs

Generator: $L=L_{0}+\frac{\mathbf{j}}{\mathbf{2 N}} L_{b}, \quad L_{0}$ stirring generator, $L_{b}=L_{b,+}+L_{b,-}$ describes births and deaths near the boundaries:

$$
\begin{gathered}
L_{b, \pm} f(\eta):=\sum_{x \in I_{ \pm}} D_{ \pm} \eta(x)\left[f\left(\eta^{(x)}\right)-f(\eta)\right] \\
D_{+} \eta(x)=(1-\eta(x)) \eta(x+1) \cdots \eta(N) \\
D_{-} \eta(x)=\eta(x)(1-\eta(x-1)) \cdots(1-\eta(-N))
\end{gathered}
$$

$\eta^{(x)}$ obtained from η by changing the occupation number at x.

Symmetric exclusion process: current reservoirs

Initial conditions: $\rho_{0}(r) r \in[-1,1]$ and the law of η_{0} approximates the initial profile ρ_{0}.

$$
\lim _{\varepsilon \rightarrow 0} P\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{0}\right)-\rho_{0}(r)\right| \leq \varepsilon^{a}\right)=1
$$

Recall

$$
\mathcal{M}_{\ell}(r, \eta):=\frac{1}{\ell} \sum_{x:\left|x-\varepsilon^{-1} r\right| \leq \ell} \eta(x)
$$

Symmetric exclusion process: hydrodynamic limit (current reservoirs)

SEP in $\Lambda_{\varepsilon}=[-N, N] \cap \mathbb{Z}, \quad N=\varepsilon^{-1}$.

Theorem

$$
\lim _{\varepsilon \rightarrow 0} P\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{\varepsilon^{-2} t}\right)-\rho(r, t)\right| \leq \varepsilon^{a}\right)=1
$$

where

$$
\frac{\partial}{\partial t} \rho(r, t)=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}} \rho(r, t), \quad r \in(-1,1)
$$

with initial datum $\rho(r, 0)=\rho_{0}(r)$ and boundary conditions $\rho(\pm 1, t)=u_{ \pm}(t)$ that satisfy non linear coupled equations.

DPTV J. Stat. Phys. 2011, Electronic J. of Prob. (2011)

SEP: hydrodynamic limit (current reservoirs)

The functions $u_{ \pm}(t)$ are the solutions of a nonlinear system of two integral equations:

$$
\begin{gathered}
u_{ \pm}(t)=\int_{-1}^{1} P_{t}(\pm 1, r) \rho_{0}(r) d r+\frac{j}{2} \int_{0}^{t}\left\{P_{s}(\pm 1,1)\left(\mathbf{1}-\mathbf{u}_{+}(\mathbf{t}-\mathbf{s})^{\mathbf{K}}\right)\right. \\
\left.-P_{s}(\pm \mathbf{1},-1)\left(\mathbf{1}-\left(\mathbf{1}-\mathbf{u}_{-}(\mathbf{t}-\mathbf{s})\right)^{\mathbf{K}}\right)\right\} d s
\end{gathered}
$$

$1-\mathbf{u}_{+}(\mathbf{t})^{\mathrm{K}}$ is (in the limit) the probability of a hole in I_{+} $\mathbf{1}$ - ($\left.\mathbf{1}-\mathbf{u}_{-}(\mathbf{t})\right)^{\mathbf{K}}$ the probability of a particle in I_{-}
$P_{t}\left(r, r^{\prime}\right)$ is the density kernel of the semigroup with generator the laplacian in $[-1,1]$ with reflecting, Neumann, boundary conditions.
$P_{t}^{(N)}(x, y)=$ prob. that r.w. starting at x is at y at time $N^{2} t$:

$$
\begin{aligned}
\mathbb{E}\left(\eta_{t}(x)\right) & =\sum_{y} P_{t}^{(N)}(x, y) \mathbb{E}\left(\eta_{0}(x)\right) \\
& +j N \int_{0}^{t} \sum_{y \in I_{ \pm}} P_{s}^{(N)}(x, y) \mathbb{E}\left(D_{ \pm} \eta_{t-s}(y)\right)
\end{aligned}
$$

$P_{s}^{(N)}(x, y) \approx \frac{1}{N} P_{s}\left(N^{-1} x, 1\right)$ for all $y \in I_{+}$and if $\nu=$ Bernoulli with parameter ρ

$P_{t}^{(N)}(x, y)=$ prob. that r.w. starting at x is at y at time $N^{2} t$:

$$
\begin{aligned}
\mathbb{E}\left(\eta_{t}(x)\right) & =\sum_{y} P_{t}^{(N)}(x, y) \mathbb{E}\left(\eta_{0}(x)\right) \\
& +j N \int_{0}^{t} \sum_{y \in I_{ \pm}} P_{s}^{(N)}(x, y) \mathbb{E}\left(D_{ \pm} \eta_{t-s}(y)\right)
\end{aligned}
$$

$P_{s}^{(N)}(x, y) \approx \frac{1}{N} P_{s}\left(N^{-1} x, 1\right)$ for all $y \in I_{+}$and if $\nu=$ Bernoulli with parameter ρ

$P_{t}^{(N)}(x, y)=$ prob. that r.w. starting at x is at y at time $N^{2} t$:

$$
\begin{aligned}
\mathbb{E}\left(\eta_{t}(x)\right) & =\sum_{y} P_{t}^{(N)}(x, y) \mathbb{E}\left(\eta_{0}(x)\right) \\
& +j N \int_{0}^{t} \sum_{y \in I_{ \pm}} P_{s}^{(N)}(x, y) \mathbb{E}\left(D_{ \pm} \eta_{t-s}(y)\right) \\
D_{+} \eta(y) & =(1-\eta(y)) \eta(y+1) \cdots \eta(N), \quad y \in I_{+} \\
D_{-} \eta(y)= & \eta(y)(1-\eta(y-1)) \cdots(1-\eta(-N)), \quad y \in I_{-}
\end{aligned}
$$

$P_{t}^{(N)}(x, y)=$ prob. that r.w. starting at x is at y at time $N^{2} t$:

$$
\begin{aligned}
\mathbb{E}\left(\eta_{t}(x)\right) & =\sum_{y} P_{t}^{(N)}(x, y) \mathbb{E}\left(\eta_{0}(x)\right) \\
& +j N \int_{0}^{t} \sum_{y \in I_{ \pm}} P_{s}^{(N)}(x, y) \mathbb{E}\left(D_{ \pm} \eta_{t-s}(y)\right)
\end{aligned}
$$

$$
\begin{gathered}
D_{+} \eta(y)=(1-\eta(y)) \eta(y+1) \cdots \eta(N), \quad y \in I_{+} \\
D_{-} \eta(y)=\eta(y)(1-\eta(y-1)) \cdots(1-\eta(-N)), \quad y \in I_{-}
\end{gathered}
$$

$P_{s}^{(N)}(x, y) \approx \frac{1}{N} P_{s}\left(N^{-1} x, 1\right)$ for all $y \in I_{+}$and if $\nu=$ Bernoulli
$P_{t}^{(N)}(x, y)=$ prob. that r.w. starting at x is at y at time $N^{2} t$:

$$
\begin{aligned}
\mathbb{E}\left(\eta_{t}(x)\right) & =\sum_{y} P_{t}^{(N)}(x, y) \mathbb{E}\left(\eta_{0}(x)\right) \\
& +j N \int_{0}^{t} \sum_{y \in I_{ \pm}} P_{s}^{(N)}(x, y) \mathbb{E}\left(D_{ \pm} \eta_{t-s}(y)\right)
\end{aligned}
$$

$$
\begin{gathered}
D_{+} \eta(y)=(1-\eta(y)) \eta(y+1) \cdots \eta(N), \quad y \in I_{+} \\
D_{-} \eta(y)=\eta(y)(1-\eta(y-1)) \cdots(1-\eta(-N)), \quad y \in I_{-}
\end{gathered}
$$

$P_{s}^{(N)}(x, y) \approx \frac{1}{N} P_{s}\left(N^{-1} x, 1\right)$ for all $y \in I_{+}$and if $\nu=$ Bernoulli with parameter ρ

$$
\sum_{y \in I_{+}} \mathbb{E}_{\nu}\left(D_{+} \eta(y)\right)=\sum_{n=1}^{K}(1-\rho) \rho^{n}=0-\rho^{K}
$$

SEP: Fick's law (current reservoirs)

Microscopic current

$$
j^{(N)}(x, t)=-\frac{1}{2} \mathbb{E}[\eta(x+1, t)-\eta(x, t)]
$$

Theorem

(same assumptions)
the limit currents $J_{+}(t)$ and $J_{-}(t)$ at the boundaries are:

SEP: Fick's law (current reservoirs)

Microscopic current

$$
j^{(N)}(x, t)=-\frac{1}{2} \mathbb{E}[\eta(x+1, t)-\eta(x, t)]
$$

Theorem

(same assumptions)

$$
\lim _{N \rightarrow \infty} N j^{(N)}\left([N r], N^{2} \tau\right)=-\frac{1}{2} \frac{d \rho(r, \tau)}{d r}
$$

the limit currents $J_{+}(t)$ and $J_{-}(t)$ at the boundaries are:

$$
J_{+}(t)=j\left[1-u_{+}(t)^{K}\right], \quad J_{-}(t)=j\left[1-\left(1-u_{-}(t)\right)^{K}\right]
$$

Macroscopic theory: current reservoirs

Recall that macroscopically a current reservoir of parameter $j \in \mathbb{R}$ is such that the currents at the endpoints are:

$$
J(-1, t)=j \lambda(\rho(-1, t)) \quad J(1, t)=j \lambda(\rho(1, t))
$$

where $\lambda(\rho)$ is a mobility parameter not necessarily equal to the bulk mobility $\kappa(\rho)$.
We have found in our model

$$
\begin{gathered}
\lambda(\rho(-1, t))=1-(1-\rho(-1, t))^{K} \\
\lambda(\rho(1, t))=1-\rho(-1, t)^{K}
\end{gathered}
$$

SEP: hydrodynamic limit: idea of proof.

Strong factorization starting from any single configuration. DPTV: Electronic J. of Prob. (2011)

SEP: hydrodynamic limit: idea of proof.

Strong factorization starting from any single configuration. DPTV: Electronic J. of Prob. (2011) $\underline{x}=\left(x_{1}, . ., x_{n}\right), x_{i} \neq x_{j} . \mathbf{n}$ body v-functions is $\left(\varepsilon=N^{-1}\right)$

$$
v_{n}\left(\underline{x}, t ; \eta_{0}\right)=\mathbb{E}_{\eta_{0}}\left(\prod_{i=1}^{n}\left[\eta_{t}\left(x_{i}\right)-\rho_{\varepsilon}\left(x_{i}, t\right)\right]\right)
$$

$\rho_{\varepsilon}(x, t), x \in \Lambda_{N}, t \geq 0$ solution of the "discretized macroscopic equation" with $\rho_{\varepsilon}(x, 0)=\eta_{0}(x)$.

SEP: hydrodynamic limit: idea of proof.

Strong factorization starting from any single configuration. DPTV: Electronic J. of Prob. (2011) $\underline{x}=\left(x_{1}, . ., x_{n}\right), x_{i} \neq x_{j} . \mathbf{n}$ body v-functions is $\left(\varepsilon=N^{-1}\right)$

$$
v_{n}\left(\underline{x}, t ; \eta_{0}\right)=\mathbb{E}_{\eta_{0}}\left(\prod_{i=1}^{n}\left[\eta_{t}\left(x_{i}\right)-\rho_{\varepsilon}\left(x_{i}, t\right)\right]\right)
$$

$\rho_{\varepsilon}(x, t), x \in \Lambda_{N}, t \geq 0$ solution of the "discretized macroscopic equation" with $\rho_{\varepsilon}(x, 0)=\eta_{0}(x)$.

$$
\begin{aligned}
\frac{d}{d t} \rho_{\varepsilon}(x, t)= & \frac{1}{2} \Delta_{\varepsilon} \rho_{\varepsilon}(x, t)+\varepsilon \frac{j}{2}\left(\mathbf{1}_{x \in I_{+}} D_{+} \rho_{\varepsilon}(x, t)\right. \\
& \left.-\mathbf{1}_{x \in I_{-}} D_{-} \rho_{\varepsilon}(x, t)\right) \\
\rho_{\varepsilon}(x, 0) & =\eta_{0}(x) \quad x \in \Lambda_{N}
\end{aligned}
$$

$$
v_{n}\left(\underline{x}, t ; \eta_{0}\right)=\mathbb{E}_{\eta_{0}}\left(\prod_{i=1}^{n}\left[\eta_{t}\left(x_{i}\right)-\rho_{\varepsilon}\left(x_{i}, t\right)\right]\right)
$$

Theorem

$\exists \tau>0, \exists \delta>0$, for all n there is c_{n} so that $\forall \eta_{0}$ and for all $\mathbf{0}<\mathbf{t} \leq \tau \log \mathbf{N}$,

$$
\sup _{\underline{x}}\left|v_{n}\left(\underline{x} ; N^{2} t ; \eta_{0}\right)\right| \leq c_{n} N^{-\delta n}
$$

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
(Av) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
$(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the
boundary process)

- terms coming from SEP analyzed in previous papers
- n body correlation feel boundary processes at rate $\frac{1}{N} T(t)$,
$T(t)$ the local time at $I_{ \pm}$
- $\frac{1}{N} T(t) \approx \frac{1}{N} \sqrt{t}$, hence small if $t=t^{*}=N^{2-\beta}, \beta>0$.

$$
\left|\mathbf{v}_{\mathbf{n}}\left(\underline{\mathbf{x}}, \mathbf{t}^{*} ; \eta\right)\right| \leq \mathbf{c}_{\mathbf{n}} \mathbf{N}^{-\delta \mathbf{n}}
$$

δ independent of β and η.

- Condition on the configuration at time t^{*} and restart, by iteration.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
(Bv) linear combination of $v_{n \pm \ell,}, \ell=1, \ldots, K$ (due to the
boundary process)

- terms coming from SEP analyzed in previous papers
- n body correlation feel boundary processes at rate $\frac{\bar{N}^{T}}{} T(t)$,

$T(t)$ the local time at $I_{ \pm}$

δ independent of β and η.

- Condition on the configuration at time t^{*} and restart, by iteration.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion) $(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the boundary process)

δ independent of β and η.

- Condition on the configuration at time t^{*} and restart, by iteration.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
$(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the boundary process)

- terms coming from SEP analyzed in previous papers
$T(t)$ the local time at $I_{ \pm}$

δ independent of β and η.
- Condition on the configuration at time t^{*} and restart, by iteration.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
$(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the boundary process)

- terms coming from SEP analyzed in previous papers
- n body correlation feel boundary processes at rate $\frac{1}{N} T(t)$, $T(t)$ the local time at $I_{ \pm}$

- Condition on the configuration at time t^{*} and restart, by iteration.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
$(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the boundary process)

- terms coming from SEP analyzed in previous papers
- n body correlation feel boundary processes at rate $\frac{1}{N} T(t)$, $T(t)$ the local time at $I_{ \pm}$
- $\frac{1}{N} T(t) \approx \frac{1}{N} \sqrt{t}$, hence small if $t=t^{*}=N^{2-\beta}, \beta>0$.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t)
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
$(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the boundary process)

- terms coming from SEP analyzed in previous papers
- n body correlation feel boundary processes at rate $\frac{1}{N} T(t)$,
$T(t)$ the local time at $I_{ \pm}$
- $\frac{1}{N} T(t) \approx \frac{1}{N} \sqrt{t}$, hence small if $t=t^{*}=N^{2-\beta}, \beta>0$.

$$
\left|\mathbf{v}_{\mathbf{n}}\left(\underline{\mathbf{x}}, \mathbf{t}^{*} ; \eta\right)\right| \leq \mathbf{c}_{\mathbf{n}} \mathbf{N}^{-\delta \mathbf{n}}
$$

δ independent of β and η.

- Condition on the configuration at time t^{*} and restart, by iteration.

$$
\frac{d}{d t} v_{n}(\underline{x}, t)=\left(L_{0} v_{n}\right)(\underline{x}, t)+(A v)(\underline{x}, t)+\frac{\mathbf{1}}{\mathbf{N}}(B v)(\underline{x}, t),
$$

L_{0} SEP (stirring) generator acting on \underline{x}
($A v$) linear combination of v_{n-1} and v_{n-2} (due to the exclusion)
$(B v)$ linear combination of $v_{n \pm \ell}, \ell=1, \ldots, K$ (due to the boundary process)

- terms coming from SEP analyzed in previous papers
- n body correlation feel boundary processes at rate $\frac{1}{N} T(t)$,
$T(t)$ the local time at $I_{ \pm}$
- $\frac{1}{N} T(t) \approx \frac{1}{N} \sqrt{t}$, hence small if $t=t^{*}=N^{2-\beta}, \beta>0$.

$$
\left|\mathbf{v}_{\mathbf{n}}\left(\underline{\mathbf{x}}, \mathbf{t}^{*} ; \eta\right)\right| \leq \mathbf{c}_{\mathbf{n}} \mathbf{N}^{-\delta \mathbf{n}}
$$

δ independent of β and η.

- Condition on the configuration at time t^{*} and restart, by iteration......

SEP: stationary measure (current reservoirs)

DPTV: J. Stat. Phys. (2012)
For each N there is a unique stationary measure $\mu_{\mathrm{N}}^{\mathrm{st}}$.

Theorem

$$
\lim _{N \rightarrow \infty} \mathbb{E}_{\mu_{N}^{\text {st }}}\left(\prod_{i}\left[\eta\left(x_{i}\right)-\varrho_{\mathrm{st}}\left(x_{i} / N\right)\right]\right)=0
$$

where ϱ_{st} is the unique stationary solution of the limit hydrodynamic equation.

$$
\varrho_{\mathrm{st}}(\mathbf{r})=\mathbf{J r}+\frac{\mathbf{1}}{\mathbf{2}}, \quad \mathbf{J}=\mathbf{j}\left(\mathbf{1}-\alpha^{\mathbf{K}}\right)
$$

with α the solution of $\alpha\left(1+j \alpha^{K-1}\right)=j+\frac{1}{2}$
The current in the stationary profile is $J<j$.

SEP: stationary measure (current reservoirs)

Sketch of proof. Macroscopic profile: $\varrho_{\mathrm{st}}^{\prime \prime}=0$ in $(-1,1)+\mathrm{bc}$.
Existence: $\varrho_{\mathrm{st}}^{\prime}=\frac{1}{2}\left(\varrho_{\mathrm{st}}(1)-\varrho_{\mathrm{st}}(-1)\right)$

$$
\begin{gathered}
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\varrho_{\mathrm{st}}(1)^{K}\right) \\
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\left[1-\varrho_{\mathrm{st}}(-1)\right]^{K}\right)
\end{gathered}
$$

Uniqueness: Hydrodynamic equation preserves order: $\rho_{0}(r, t)$ starts from 0 and $\rho_{1}(r, t)$ from 1 then

$$
\rho_{0}(r, t) \leq \varrho_{\mathrm{st}}(r) \leq \rho_{1}(r, t)
$$

It can be proved that

SEP: stationary measure (current reservoirs)

Sketch of proof. Macroscopic profile: $\varrho_{\mathrm{st}}^{\prime \prime}=0$ in $(-1,1)+\mathrm{bc}$.
Existence: $\varrho_{\mathrm{st}}^{\prime}=\frac{1}{2}\left(\varrho_{\mathrm{st}}(1)-\varrho_{\mathrm{st}}(-1)\right)$

$$
\begin{gathered}
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\varrho_{\mathrm{st}}(1)^{K}\right) \\
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\left[1-\varrho_{\mathrm{st}}(-1)\right]^{K}\right)
\end{gathered}
$$

Uniqueness: Hydrodynamic equation preserves order: $\rho_{0}(r, t)$ starts from 0 and $\rho_{1}(r, t)$ from 1 then

$$
\rho_{0}(r, t) \leq \varrho_{\mathrm{st}}(r) \leq \rho_{1}(r, t)
$$

It can be proved that

SEP: stationary measure (current reservoirs)

Sketch of proof. Macroscopic profile: $\varrho_{\mathrm{st}}^{\prime \prime}=0$ in $(-1,1)+\mathrm{bc}$.
Existence: $\varrho_{\mathrm{st}}^{\prime}=\frac{1}{2}\left(\varrho_{\mathrm{st}}(1)-\varrho_{\mathrm{st}}(-1)\right)$

$$
\begin{gathered}
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\varrho_{\mathrm{st}}(1)^{K}\right) \\
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\left[1-\varrho_{\mathrm{st}}(-1)\right]^{K}\right)
\end{gathered}
$$

Uniqueness: Hydrodynamic equation preserves order: $\rho_{0}(r, t)$ starts from 0 and $\rho_{1}(r, t)$ from 1 then

$$
\rho_{0}(r, t) \leq \varrho_{\mathrm{st}}(r) \leq \rho_{1}(r, t)
$$

It can be proved that

SEP: stationary measure (current reservoirs)

Sketch of proof. Macroscopic profile: $\varrho_{\mathrm{st}}^{\prime \prime}=0$ in $(-1,1)+\mathrm{bc}$.
Existence: $\varrho_{\mathrm{st}}^{\prime}=\frac{1}{2}\left(\varrho_{\mathrm{st}}(1)-\varrho_{\mathrm{st}}(-1)\right)$

$$
\begin{gathered}
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\varrho_{\mathrm{st}}(1)^{K}\right) \\
\frac{1}{2} \varrho_{\mathrm{st}}^{\prime}=j\left(1-\left[1-\varrho_{\mathrm{st}}(-1)\right]^{K}\right)
\end{gathered}
$$

Uniqueness: Hydrodynamic equation preserves order: $\rho_{0}(r, t)$ starts from 0 and $\rho_{1}(r, t)$ from 1 then

$$
\rho_{0}(r, t) \leq \varrho_{\mathrm{st}}(r) \leq \rho_{1}(r, t)
$$

It can be proved that

$$
\rho_{\mathbf{1}}(\mathbf{r}, \mathbf{t})-\rho_{\mathbf{0}}(\mathbf{r}, \mathbf{t}) \leq \mathbf{a} \mathbf{e}^{-\mathbf{b t}}, \quad \mathbf{b}>\mathbf{0}
$$

Also the process preserves order: it is attractive. if $\eta_{0}(x) \leq \xi_{0}(x), \forall x \in \Lambda_{N}$ then there is a coupling such that $\eta_{t}(x) \leq \xi_{t}(x), \forall x \in \Lambda_{N}$ for all $t>0$.

Stirring preserves order.

It suffices to notice $\left(c(x, \eta)=D_{ \pm} \eta(x)\right)$

- if $\eta(x)=\xi(x)=0$ and $\eta<\xi$ then $c(x, \eta) \leq c(x, \xi)$
- if $\eta(x)=\xi(x)=1$ and $\eta \leq \xi$ then $c(x, \xi) \leq c(x, \eta)$

Also the process preserves order: it is attractive. if $\eta_{0}(x) \leq \xi_{0}(x), \forall x \in \Lambda_{N}$ then there is a coupling such that $\eta_{t}(x) \leq \xi_{t}(x), \forall x \in \Lambda_{N}$ for all $t>0$.
Stirring preserves order.

$$
\begin{aligned}
& \qquad L_{b, \pm} f(\eta):=\sum_{x \in I_{ \pm}} D_{ \pm} \eta(x)\left[f\left(\eta^{(x)}\right)-f(\eta)\right] \\
& D_{+} \eta(x)=(1-\eta(x)) \eta(x+1) \cdots \eta(N) \\
& D_{-} \eta(x)=\eta(x)(1-\eta(x-1)) \cdots(1-\eta(-N)) \\
& \text { It suffices to notice }\left(c(x, \eta)=D_{ \pm} \eta(x)\right)
\end{aligned}
$$

Also the process preserves order: it is attractive. if $\eta_{0}(x) \leq \xi_{0}(x), \forall x \in \Lambda_{N}$ then there is a coupling such that $\eta_{t}(x) \leq \xi_{t}(x), \forall x \in \Lambda_{N}$ for all $t>0$.
Stirring preserves order.

$$
\begin{aligned}
& \qquad L_{b, \pm} f(\eta):=\sum_{x \in I_{ \pm}} D_{ \pm} \eta(x)\left[f\left(\eta^{(x)}\right)-f(\eta)\right] \\
& D_{+} \eta(x)=(1-\eta(x)) \eta(x+1) \cdots \eta(N) \\
& D_{-} \eta(x)=\eta(x)(1-\eta(x-1)) \cdots(1-\eta(-N)) \\
& \text { It suffices to notice }\left(c(x, \eta)=D_{ \pm} \eta(x)\right) \\
& \text { - if } \eta(x)=\xi(x)=0 \text { and } \eta \leq \xi \text { then } c(x, \eta) \leq c(x, \xi)
\end{aligned}
$$

Also the process preserves order: it is attractive. if $\eta_{0}(x) \leq \xi_{0}(x), \forall x \in \Lambda_{N}$ then there is a coupling such that $\eta_{t}(x) \leq \xi_{t}(x), \forall x \in \Lambda_{N}$ for all $t>0$.

Stirring preserves order.

$$
\begin{aligned}
& L_{b, \pm} f(\eta):=\sum_{x \in I_{ \pm}} D_{ \pm} \eta(x)\left[f\left(\eta^{(x)}\right)-f(\eta)\right] \\
D_{+} \eta(x)= & (1-\eta(x)) \eta(x+1) \cdots \eta(N) \\
D_{-} \eta(x)= & \eta(x)(1-\eta(x-1)) \cdots(1-\eta(-N))
\end{aligned}
$$

It suffices to notice $\left(c(x, \eta)=D_{ \pm} \eta(x)\right)$

- if $\eta(x)=\xi(x)=0$ and $\eta \leq \xi$ then $c(x, \eta) \leq c(x, \xi)$
- if $\eta(x)=\xi(x)=1$ and $\eta \leq \xi$ then $c(x, \xi) \leq c(x, \eta)$

Take $\phi \geq 0$, then

$$
\mathbb{E}_{\mu_{\mathrm{N}}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta(x)\right] \leq \mathbb{E}_{\mathbf{1}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta\left(x, N^{2} t\right)\right]
$$

By taking $N \rightarrow \infty$,

By taking $t \rightarrow \infty$,

The reverse inequality is proved similarly.

Take $\phi \geq 0$, then

$$
\mathbb{E}_{\mu_{\mathrm{N}}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta(x)\right] \leq \mathbb{E}_{\mathbf{1}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta\left(x, N^{2} t\right)\right]
$$

By taking $N \rightarrow \infty$,

$$
\leq \int_{-1}^{1} \phi(r) \rho_{1}(r, t)
$$

By taking $t \rightarrow \infty$,

The reverse inequality is proved similarly.

Take $\phi \geq 0$, then

$$
\mathbb{E}_{\mu_{\mathrm{N}}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta(x)\right] \leq \mathbb{E}_{\mathbf{1}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta\left(x, N^{2} t\right)\right]
$$

By taking $N \rightarrow \infty$,

$$
\leq \int_{-1}^{1} \phi(r) \rho_{1}(r, t)
$$

By taking $t \rightarrow \infty$,

$$
\leq \int_{-1}^{1} \phi(\mathbf{r}) \varrho_{s t}(\mathbf{r})
$$

The reverse inequality is proved similarly.

Take $\phi \geq 0$, then

$$
\mathbb{E}_{\mu_{\mathbb{N}}}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta(x)\right] \leq \mathbb{E}_{1}\left[\frac{1}{N} \sum_{x} \phi\left(N^{-1} x\right) \eta\left(x, N^{2} t\right)\right]
$$

By taking $N \rightarrow \infty$,

$$
\leq \int_{-1}^{1} \phi(r) \rho_{1}(r, t)
$$

By taking $t \rightarrow \infty$,

$$
\leq \int_{-1}^{1} \phi(\mathbf{r}) \varrho_{\mathrm{st}}(\mathbf{r})
$$

The reverse inequality is proved similarly.

SEP: spectral gap

Theorem

There are c and $b>0$ independent of N so that for any initial measure ν_{N}

$$
\left\|\nu_{N, t}-\mu_{N}^{\mathrm{st}}\right\| \leq c N e^{-b N^{-2} t}
$$

$$
\|\lambda\|=\sum_{\eta}|\lambda(\eta)|
$$

DPTV: preprint (2013) http://arxiv.org/abs/1304.0624

SEP: spectral gap

In some respect surprising!

- With $j=0, L=L_{0}$ (stirring process) restricted to any of the invariant subspaces $\left\{\eta: \sum \eta(x)=M\right\}$ has a spectral gap that scales as N^{-2}.
The full process with $L=L_{0}+\frac{j}{N} L_{b}$ in a time of the same order
N^{2} manage to equilibrate among all the above subspaces
according to $\mu_{N}^{\text {st }}$.
- Density reservoirs: $L=L_{0}+L^{\prime}$.

Same spectral gap: $\left\|\nu_{N, t}-\mu_{N}^{\text {st }}\right\| \leq c N e^{-b N^{-2} t}$.
Here the birth-death events are not scaled down with N.

SEP: spectral gap

In some respect surprising!

- With $j=0, L=L_{0}$ (stirring process) restricted to any of the invariant subspaces $\left\{\eta: \sum \eta(x)=M\right\}$ has a spectral gap that scales as N^{-2}.

The full process with $L=L_{0}+\frac{J}{N} L_{b}$ in a time of the same order
N^{2} manage to equilibrate among all the above subspaces according to $\mu_{N}^{\text {st }}$.

- Density reservoirs: $L=L_{0}+L^{\prime}$.

Same spectral gap: $\left\|\nu_{N, t}-\mu_{N}^{\text {st }}\right\| \leq c N e^{-b N^{-2} t}$.
Here the birth-death events are not scaled down with N.

SEP: spectral gap

In some respect surprising!

- With $j=0, L=L_{0}$ (stirring process) restricted to any of the invariant subspaces $\left\{\eta: \sum \eta(x)=M\right\}$ has a spectral gap that scales as N^{-2}.
The full process with $L=L_{0}+\frac{j}{N} L_{b}$ in a time of the same order N^{2} manage to equilibrate among all the above subspaces according to μ_{N}^{st}.
- Density reservoirs: $L=L_{0}+L^{\prime}$.

Same spectral gap: $\left\|\nu_{N, t}-\mu_{N}^{\text {st }}\right\| \leq c N e^{-b N^{-2} t}$
Here the birth-death events are not scaled down with N.

SEP: spectral gap

In some respect surprising!

- With $j=0, L=L_{0}$ (stirring process) restricted to any of the invariant subspaces $\left\{\eta: \sum \eta(x)=M\right\}$ has a spectral gap that scales as N^{-2}.
The full process with $L=L_{0}+\frac{j}{N} L_{b}$ in a time of the same order N^{2} manage to equilibrate among all the above subspaces according to $\mu_{N}^{\text {st }}$.
- Density reservoirs: $L=L_{0}+L^{\prime}$. Same spectral gap: $\left\|\nu_{N, t}-\mu_{N}^{s t}\right\| \leq c N e^{-b N^{-2} t}$.
Here the birth-death events are not scaled down with N.

In some respect surprising!

- With $j=0, L=L_{0}$ (stirring process) restricted to any of the invariant subspaces $\left\{\eta: \sum \eta(x)=M\right\}$ has a spectral gap that scales as N^{-2}.
The full process with $L=L_{0}+\frac{j}{N} L_{b}$ in a time of the same order N^{2} manage to equilibrate among all the above subspaces according to $\mu_{N}^{\text {st }}$.
- Density reservoirs: $L=L_{0}+L^{\prime}$.

Same spectral gap: $\left\|\nu_{N, t}-\mu_{N}^{\text {st }}\right\| \leq c N^{-b N^{-2} t}$.
Here the birth-death events are not scaled down with N.

SEP: spectral gap

We do not have sharp information on $\mu_{N}^{\text {st }}$.
We know that $\mu_{N}^{\text {st }}$ is close to a product measure γ_{N} and that the expectations $\gamma_{N}[\eta(x)] \sim \rho^{\text {st }}(x / N)$ which does not seem detailed enough to apply the usual techniques for the spectral gap using equilitbrium estimates.

Way out: use inequalities exploiting the fact that the process is attractive.

SEP: spectral gap

We do not have sharp information on $\mu_{N}^{\text {st }}$.
We know that $\mu_{N}^{\text {st }}$ is close to a product measure γ_{N} and that the expectations $\gamma_{N}[\eta(x)] \sim \rho^{\text {st }}(x / N)$ which does not seem detailed enough to apply the usual techniques for the spectral gap using equilibrium estimates.

Way out: use inequalities exploiting the fact that the process is attractive.

We do not have sharp information on $\mu_{N}^{\text {st }}$.
We know that $\mu_{N}^{\text {st }}$ is close to a product measure γ_{N} and that the expectations $\gamma_{N}[\eta(x)] \sim \rho^{\text {st }}(x / N)$ which does not seem detailed enough to apply the usual techniques for the spectral gap using equilibrium estimates.

Way out: use inequalities exploiting the fact that the process is attractive.

SEP: spectral gap. Idea of proof.

For simplicity assume that $K=2$

$$
I_{+}=\{N-1, N\}, \quad I_{-}=\{-N,-N+1\}
$$

Couple the processes starting from all 1 and from all 0.

First component is always above the second one.

standard coupling.

SEP: spectral gap. Idea of proof.

For simplicity assume that $K=2$

$$
I_{+}=\{N-1, N\}, \quad I_{-}=\{-N,-N+1\}
$$

Couple the processes starting from all 1 and from all 0.
First component is always above the second one.
$\mathcal{X}_{N}=\left\{\left(\eta^{(1)}, \eta^{(2)}\right) \in(\{0,1\} \times\{0,1\})^{[-N, N]}: \eta^{(1)}(x)-\eta^{(2)}(x) \geq 0, \forall x\right\}$
standard coupling.

At each site x we may only have:

At each site x we may only have:

discrepancy $(1,0): \quad \eta_{\neq}(x):=\eta^{(1)}(x)-\eta^{(2)}(x)=1$

full occupation $(1,1): \quad \eta_{1}(x):=\eta^{(1)}(x) \eta^{(2)}(x)=1$

At each site x we may only have:
discrepancy $(1,0): \quad \eta_{\neq}(x):=\eta^{(1)}(x)-\eta^{(2)}(x)=1$
full occupation $(1,1): \quad \eta_{1}(x):=\eta^{(1)}(x) \eta^{(2)}(x)=1$

At each site x we may only have:
discrepancy $(1,0): \quad \eta_{\neq}(x):=\eta^{(1)}(x)-\eta^{(2)}(x)=1$
full occupation $(1,1): \quad \eta_{1}(x):=\eta^{(1)}(x) \eta^{(2)}(x)=1$
$\frac{1}{x}$
full void $(0,0)$: $\eta_{0}(x):=\left[1-\eta^{(1)}(x)\right]\left[1-\eta^{(2)}(x)\right]=1$

Initially $\eta_{\neq}(x)=1$ for all $x\left(\right.$ we start with $\eta^{(1)} \equiv 1$ and $\left.\eta^{(2)} \equiv 0\right)$.

Theorem

$$
\sum_{x=-N}^{N} \mathbf{P}\left[\eta_{\neq}(x, t)=1\right] \leq c N e^{-b N^{-2} t}
$$

Proof: reduction to a random walk in a random moving environment.

$$
\xi \in\{\#, 1,0\}^{\wedge_{N}}
$$

discrepancy: $\quad \xi(x)=\#$
full occupation: $\quad \xi(x)=1$
full void: $\xi(x)=0$

Evolution $\xi_{t} \in\{\#, 1,0\}^{\Lambda_{N}}, t \geq 0$:

SEP (stirring) exchanges the occupation numbers of ξ.

At the boundaries $I_{+}=\{N-1, N\}, I_{-}=\{-N,-N+1\}$ the

Three types of events: D, A and B.

Evolution $\xi_{t} \in\{\#, 1,0\}^{\wedge_{N}}, t \geq 0$:

SEP (stirring) exchanges the occupation numbers of ξ.

At the boundaries $I_{+}=\{N-1, N\}, I_{-}=\{-N,-N+1\}$ the changes are at rates $\frac{j}{N}$.

Three types of events: D, A and B.

Action at the boundary $I_{+}=\{N-1, N\}$

D-event at $N: \xi(N)=\#$ changes in $\xi(N)=1$
before jump

or
before jump

Action at the boundary $I_{+}=\{N-1, N\}$

D-event at $N-1: \xi(N-1)=\#$ changes in $\xi(N-1)=1$
before jump

Action at the boundary $I_{+}=\{N-1, N\}$

A-event: $\quad \xi(N)=\#$ changes in $\xi(N)=1$ and $\xi(N-1)=0$ changes in $\xi(N-1)=\#$

Action at the boundary $I_{+}=\{N-1, N\}$

B-event at N or at $N-1: \xi(x)=0$ changes in $\xi(x)=1$, $x=N, N-1$
before jump:

after

or
before jump:

after

Call x_{t} the position at time t of a discrepancy. At $t=0$ all the sites of Λ_{N} are occupied by a discrepancy.

Motion of x_{t} : it is a random walk (stirring of the ξ-process) and:

- if an A-event occurs then it jumps from N to $N-1$ if
$\xi(N-1)=0$, and analogously from $-N$ to $-N+1$ if
$\xi(-N+1)=1$.
- if a D-event occurs then it dies (with the conditions explained before). We say that the discrepancy goes in the state \emptyset.
- B -events do not effect the motion of the discrepancies.

Call x_{t} the position at time t of a discrepancy.
At $t=0$ all the sites of Λ_{N} are occupied by a discrepancy.
Motion of x_{t} : it is a random walk (stirring of the ξ-process) and:

- if an A-event occurs then it jumps from N to N - 1 if
$\xi(N-1)=0$, and analogously from $-N$ to $-N+1$ if
$\xi(-N+1)=1$.
- if a D-event occurs then it dies (with the conditions explained before). We say that the discrepancy goes in the state \emptyset.
- B-events do not effect the motion of the discrepancies.

Call x_{t} the position at time t of a discrepancy.
At $t=0$ all the sites of Λ_{N} are occupied by a discrepancy.
Motion of x_{t} : it is a random walk (stirring of the ξ-process) and:

- if an A-event occurs then it jumps from N to $N-1$ if $\xi(N-1)=0$, and analogously from $-N$ to $-N+1$ if $\xi(-N+1)=1$.
- if a D-event occurs then it dies (with the conditions explained before). We say that the discrepancy goes in the state \emptyset.
- B-events do not effect the motion of the discrenancies.

Call x_{t} the position at time t of a discrepancy.
At $t=0$ all the sites of Λ_{N} are occupied by a discrepancy.
Motion of x_{t} : it is a random walk (stirring of the ξ-process) and:

- if an A-event occurs then it jumps from N to $N-1$ if $\xi(N-1)=0$, and analogously from $-N$ to $-N+1$ if $\xi(-N+1)=1$.
- if a D-event occurs then it dies (with the conditions explained
before). We say that the discrepancy goes in the state \emptyset.
- B-events do not effect the motion of the discrepancies.

Call x_{t} the position at time t of a discrepancy.
At $t=0$ all the sites of Λ_{N} are occupied by a discrepancy.
Motion of x_{t} : it is a random walk (stirring of the ξ-process) and:

- if an A-event occurs then it jumps from N to $N-1$ if
$\xi(N-1)=0$, and analogously from $-N$ to $-N+1$ if
$\xi(-N+1)=1$.
- if a D-event occurs then it dies (with the conditions explained before). We say that the discrepancy goes in the state \emptyset.
- B -events do not effect the motion of the discrepancies.

Call x_{t} the position at time t of a discrepancy.
At $t=0$ all the sites of Λ_{N} are occupied by a discrepancy.
Motion of x_{t} : it is a random walk (stirring of the ξ-process) and:

- if an A-event occurs then it jumps from N to $N-1$ if
$\xi(N-1)=0$, and analogously from $-N$ to $-N+1$ if
$\xi(-N+1)=1$.
- if a D-event occurs then it dies (with the conditions explained before). We say that the discrepancy goes in the state \emptyset.
- B-events do not effect the motion of the discrepancies.

We have to prove that the probability that all the discrepancies die out is exponentially close to 1.

I will prove later that it is enough to consider the case of a single discrepancy.

This lead to the analysis of a random walk x_{t} in a moving random environment $\xi_{t} \in\{\#, 0,1\}^{[-N, N] \backslash x_{t}}$ when $x_{t} \neq \emptyset$ (i.e. it is alive)

We need to estimate $P\left(x_{t} \neq \emptyset\right)$.

We have to prove that the probability that all the discrepancies die out is exponentially close to 1.

I will prove later that it is enough to consider the case of a single discrepancy.

This lead to the analysis of a random walk x_{t} in a moving random environment $\xi_{t} \in\{\#, 0,1\}^{[-N, N] \backslash x_{t}}$ when $x_{t} \neq \emptyset$ (i.e. it is alive)

We need to estimate $P\left(x_{t} \neq \emptyset\right)$.

We have to prove that the probability that all the discrepancies die out is exponentially close to 1.

I will prove later that it is enough to consider the case of a single discrepancy.

This lead to the analysis of a random walk x_{t} in a moving random environment $\xi_{t} \in\{\#, 0,1\}^{[-N, N] \backslash x_{t}}$ when $x_{t} \neq \emptyset$ (i.e. it is alive)

We need to estimate $P\left(x_{t} \neq \emptyset\right)$.

Random walk in a moving random environment

The process $\left\{x_{t}, t \geq 0\right\}$ has jump intensities at time t given by the conditional probabilities of the environment conditioned on the state of the random walk at that time.

Movements. Random walk at rate 1 to $\mathrm{n} . \mathrm{n}$. sites + extra jumps $N \rightarrow N-1$ and $-N \rightarrow-N+1$ at rates $a(\pm N, t)$

Recall the A-events:

The process $\left\{x_{t}, t \geq 0\right\}$ has jump intensities at time t given by the conditional probabilities of the environment conditioned on the state of the random walk at that time.

Recall the A-events:

The process $\left\{x_{t}, t \geq 0\right\}$ has jump intensities at time t given by the conditional probabilities of the environment conditioned on the state of the random walk at that time.

Movements. Random walk at rate 1 to n.n. sites + extra jumps $N \rightarrow N-1$ and $-N \rightarrow-N+1$ at rates $a(\pm N, t)$.

Recall the A-events:

Random walk in a moving random environment

The process $\left\{x_{t}, t \geq 0\right\}$ has jump intensities at time t given by the conditional probabilities of the environment conditioned on the state of the random walk at that time.

Movements. Random walk at rate 1 to n.n. sites + extra jumps $N \rightarrow N-1$ and $-N \rightarrow-N+1$ at rates $a(\pm N, t)$.

$$
a(N, t)=\frac{j}{2 N} P\left[(\xi(N-1, t)=0) \mid x_{t}=N\right]
$$

Recall the A-events:

Dead rates: $d(N-1, t)$ and $d(N, t)$ (coming from the D-events).

Dead rates: $d(N-1, t)$ and $d(N, t)$ (coming from the D-events).

$$
d(N-1, t)=P\left[\xi(N, t)=1 \mid x_{t}=N-1\right]
$$

ecc.....

The operator \mathcal{L}_{t}

Functions f defined in $\Lambda_{N} \cup\{\emptyset\}$.

$$
\begin{aligned}
& a(N, t)=\frac{j}{2 N} P\left[(\xi(N-1, t)=0) \mid x_{t}=N\right], \\
& a(-N, t)=\frac{j}{2 N} P\left[\left(\xi(-N+1, t)=1 \mid x_{t}=-N\right]\right. \\
& \begin{aligned}
\mathcal{L}_{t}^{a} f(x) & =\mathcal{L}^{0} f(z)+\mathbf{1}_{x=N} a(N, t)[f(N-1)-f(N)] \\
& +\mathbf{1}_{x=-N} a(-N, t)[f(-N+1)-f(-N)],
\end{aligned}
\end{aligned}
$$

\mathcal{L}_{t}^{a} generator of a random walk.

The full time- dependent generator \mathcal{L}_{t} is obtained by adding the dead part.

$$
\begin{gathered}
\mathcal{L}_{t} f(x)=\mathcal{L}_{t}^{a} f(x)+\frac{j}{2 N} d(x, t)[f(\emptyset)-f(z)] \\
d(x, t)=0 \text { if }|x|<N-1 \\
d(N-1, t)=P\left[\xi(N, t)=1 \mid x_{t}=N-1\right] \\
d(N, t)=P\left[\xi(N-1, t) \neq 0 \mid x_{t}=N\right]
\end{gathered}
$$

Define a time-dependent Markov process $\left\{z_{t}, t \geq 0\right\}$ with timedependent generator \mathcal{L}_{t}. The survival probability for this random walk is

$$
\mathcal{P}\left[\mathbf{z}_{\mathbf{t}} \neq \emptyset\right]=\mathbb{E}\left[\exp \left\{-\frac{\mathbf{j}}{\mathbf{N}} \int_{0}^{\mathbf{t}} \mathbf{d}\left(\mathbf{z}_{\mathbf{s}}, \mathbf{s}\right) \mathbf{d} \mathbf{s}\right\}\right]
$$

Lemma

Let $z_{0}=x_{0}$, then

$$
P\left[x_{t} \neq \emptyset\right]=\mathcal{P}\left[z_{t} \neq \emptyset\right]
$$

Proof. It is enough to prove that for any bounded measurable

 function $\phi(x, \eta)=f(x)$:$$
E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[f\left(z_{t}\right)\right]
$$

and this follows because

$$
\frac{d}{d t} E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=E_{x_{0}, \xi_{0}}\left[\mathcal{L}_{t} f\left(x_{t}\right)\right]
$$

and also

$$
\frac{d}{d t} \mathcal{E}_{x_{0}}\left[f\left(z_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[\mathcal{L}_{t} f\left(z_{t}\right)\right]
$$

Lemma

Let $z_{0}=x_{0}$, then

$$
P\left[x_{t} \neq \emptyset\right]=\mathcal{P}\left[z_{t} \neq \emptyset\right]
$$

Proof. It is enough to prove that for any bounded measurable function $\phi(x, \eta)=f(x)$:

$$
E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[f\left(z_{t}\right)\right]
$$

and this follows because

$$
\left[f\left(z_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[\mathcal{L}_{t} f\left(z_{t}\right)\right]
$$

Lemma

Let $z_{0}=x_{0}$, then

$$
P\left[x_{t} \neq \emptyset\right]=\mathcal{P}\left[z_{t} \neq \emptyset\right]
$$

Proof. It is enough to prove that for any bounded measurable function $\phi(x, \eta)=f(x)$:

$$
E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[f\left(z_{t}\right)\right]
$$

and this follows because

$$
\frac{d}{d t} E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=E_{x_{0}, \xi_{0}}\left[\mathcal{L}_{t} f\left(x_{t}\right)\right]
$$

and also

Lemma

Let $z_{0}=x_{0}$, then

$$
P\left[x_{t} \neq \emptyset\right]=\mathcal{P}\left[z_{t} \neq \emptyset\right]
$$

Proof. It is enough to prove that for any bounded measurable function $\phi(x, \eta)=f(x)$:

$$
E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[f\left(z_{t}\right)\right]
$$

and this follows because

$$
\frac{d}{d t} E_{x_{0}, \xi_{0}}\left[\phi\left(x_{t}, \xi_{t}\right)\right]=E_{x_{0}, \xi_{0}}\left[\mathcal{L}_{t} f\left(x_{t}\right)\right]
$$

and also

$$
\frac{d}{d t} \mathcal{E}_{x_{0}}\left[f\left(z_{t}\right)\right]=\mathcal{E}_{x_{0}}\left[\mathcal{L}_{t} f\left(z_{t}\right)\right]
$$

$$
\mathcal{P}\left[z_{t} \neq \emptyset\right] \leq \mathcal{E}\left[\exp \left\{-\int_{0}^{t} d(N, s) \mathbf{1}_{z_{s}=N} d s\right\}\right]
$$

- There are $\delta^{*}>0$ and $\kappa>0$ so that for all $t \geq \kappa N^{2}$:

$$
d(N, t) \geq \delta^{*}
$$

- There are c and $b>0$ so that calling $T^{*}(t)$ the total time spent at N by $z_{s}, 0 \leq s \leq t$:

$$
\mathcal{E}\left[\exp \left\{-j \delta^{*} N^{-1} T^{*}(t)\right\}\right] \leq c e^{-b N^{-2} t}, \quad t \geq \kappa N^{2}
$$

Random walk in a random moving environment. Many discrepancies

Initially all sites are occupied by discrepancies.
Label the initial discrepancies by assigning with uniform
probability a label in $\{1, . ., 2 N+1\}$ to each site in $[-N, N]$
Call $\left(x_{1}, \ldots, x_{2 N+1}\right)$ the sites corresponding to the labels $1, \ldots, 2 N+1$ x_{i} is the position at time 0 of the discrepancy with label i, At $t=0$

Random walk in a random moving environment. Many discrepancies

Initially all sites are occupied by discrepancies.
Label the initial discrepancies by assigning with uniform probability a label in $\{1, . ., 2 N+1\}$ to each site in $[-N, N]$

Call $\left(x_{1}, \ldots, x_{2 N+1}\right)$ the sites corresponding to the labels $1, \ldots, 2 N+1$.
x_{i} is the position at time 0 of the discrepancy with label i

Random walk in a random moving environment. Many discrepancies

Initially all sites are occupied by discrepancies.
Label the initial discrepancies by assigning with uniform probability a label in $\{1, . ., 2 N+1\}$ to each site in $[-N, N]$

Call $\left(x_{1}, \ldots, x_{2 N+1}\right)$ the sites corresponding to the labels $1, \ldots, 2 N+1$.
x_{i} is the position at time 0 of the discrepancy with label i. At $t=0$

$$
P\left(x_{i}=x\right)=\frac{1}{2 N+1}
$$

Random walk in a random moving environment. Many discrepancies

We have to bound the quantity

$$
\begin{aligned}
P\left[\text { there is } i: x_{i}(t) \neq \emptyset\right] & \leq \sum_{i} P\left[x_{i}(t) \neq \emptyset\right] \\
& =(2 N+1) P\left[x_{1}(t) \neq \emptyset\right]
\end{aligned}
$$

last equality by simmetry.
We need to estimate $P\left[x_{1}(t) \neq \emptyset\right]$ in an environment similar to the one before.

Random walk in a random moving environment. Many discrepancies

We have to bound the quantity

$$
\begin{aligned}
P\left[\text { there is } i: x_{i}(t) \neq \emptyset\right] & \leq \sum_{i} P\left[x_{i}(t) \neq \emptyset\right] \\
& =(2 N+1) P\left[x_{1}(t) \neq \emptyset\right]
\end{aligned}
$$

last equality by simmetry.
We need to estimate $P\left[x_{1}(t) \neq \emptyset\right]$ in an environment similar to the one before.

Some open problems

- Our methods do not allow to study the large deviations of the stationary measure.
- Extension to other interacting particle systems. Problem: local equilibrium is not satisfied at the boundary.
- Do the matrix Derrida techniques work for current reservoirs?

Some open problems

- Our methods do not allow to study the large deviations of the stationary measure.
- Extension to other interacting particle systems. Problem: local equilibrium is not satisfied at the boundary.
- Do the matrix Derrida techniques work for current reservoirs?

Some open problems

- Our methods do not allow to study the large deviations of the stationary measure.
- Extension to other interacting particle systems. Problem: local equilibrium is not satisfied at the boundary.
- Do the matrix Derrida techniques work for current reservoirs?

Some open problems

- Our methods do not allow to study the large deviations of the stationary measure.
- Extension to other interacting particle systems. Problem: local equilibrium is not satisfied at the boundary.
- Do the matrix Derrida techniques work for current reservoirs?

SSEP: Free boundaries.

Impose a macroscopic current $j>0$.

At rate εj a particle is placed at the first empty site (from the left).
At rate εj a particle is removed from the first occupied site (from the right).

The Iocations of the first hole and the last particle are random.

SSEP: Free boundaries.

Impose a macroscopic current $j>0$.

At rate εj a particle is placed at the first empty site (from the left).
At rate εj a particle is removed from the first occupied site (from the right).

The locations of the first hole and the last particle are random.

SSEP: Free boundaries.

Impose a macroscopic current $j>0$.

At rate εj a particle is placed at the first empty site (from the left).
At rate εj a particle is removed from the first occupied site (from the right).
The locations of the first hole and the last particle are random.

DM,Ferrari,Presutti (2013) http://arxiv.org/abs/1304.0701

SSEP: Free boundaries.

We restrict to configurations which have a rightmost particle and a leftmost hole. The configuration space is:

black and white circles represent respectively particles and holes.

SSEP: Free boundaries.

We restrict to configurations which have a rightmost particle and a leftmost hole. The configuration space is:

$$
\mathcal{X}:=\left\{\eta \in\{0,1\}^{\mathbb{Z}}: \sum_{x \geq 0} \eta(x)<\infty, \sum_{x \leq 0}(1-\eta(x))<\infty\right\}
$$

$\mathbf{X}(\eta)=\max \{x \in \mathbb{Z}: \eta(x)=1\}, \quad Y(\eta)=\min \{x \in \mathbb{Z}: \eta(x)=0\}$
black and white circles represent respectively particles and holes.

SSEP: Free boundaries.

Markov process $\left\{\eta_{t}\right\}_{t \geq 0}$ with state space \mathcal{X}. SSEP + birth and death at rate $j \varepsilon, \varepsilon>0$ small, $j>0$.

where η is identified with the set of occupied sites
$\{x \in \mathbb{Z}: \eta(x)=1\}$.

SSEP: Free boundaries.

Markov process $\left\{\eta_{t}\right\}_{t \geq 0}$ with state space \mathcal{X}.
SSEP + birth and death at rate $j \varepsilon, \varepsilon>0$ small, $j>0$.

The generator is:

$$
L_{0}+j \varepsilon L_{\mathrm{bd}}, \quad L_{\mathrm{bd}}=L_{r}+L_{\ell}
$$

$L_{\ell} f(\eta):=(f(\eta \cup Y(\eta))-f(\eta)) ; \quad L_{r} f(\eta):=(f(\eta \backslash X(\eta))-f(\eta))$,
where η is identified with the set of occupied sites $\{x \in \mathbb{Z}: \eta(x)=1\}$.

SSEP: Free boundaries.

Main features.

- Topological interactions

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., ... \& Zdravkovic, V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232-1237, (2008).

- Interaction is highly non local: perturbation of the SEP ($L=L_{0}+\varepsilon j\left[L_{r}+L_{\ell}\right]$) but $L_{r}+L_{\ell}$ are non local (need to find the last particle and the first hole). The usual techniques do not apply.
- Hydrodynamic limits with boundary conditions on derivatives

SSEP: Free boundaries.

Main features.

- Topological interactions

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., ... \& Zdravkovic, V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232-1237, (2008).

- Interaction is highly non local: perturbation of the SEP $\left(L=L_{0}+\varepsilon j\left[L_{r}+L_{\ell}\right]\right)$ but $L_{r}+L_{\ell}$ are non local (need to find the last particle and the first hole). The usual techniques do not apply.
- Hydrodynamic limits with boundary conditions on derivatives

SSEP: Free boundaries.

Main features.

- Topological interactions

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., ... \& Zdravkovic, V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232-1237, (2008).

- Interaction is highly non local: perturbation of the SEP $\left(L=L_{0}+\varepsilon j\left[L_{r}+L_{\ell}\right]\right)$
last particle and the first hole). The usual techniques do not
apply.
- Hydrodynamic limits with boundary conditions on derivatives

SSEP: Free boundaries.

Main features.

- Topological interactions

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., ... \& Zdravkovic, V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232-1237, (2008).

- Interaction is highly non local: perturbation of the SEP ($L=L_{0}+\varepsilon j\left[L_{r}+L_{\ell}\right]$) but $L_{r}+L_{\ell}$ are non local (need to find the last particle and the first hole).
- Hydrodynamic limits with boundary conditions on derivatives

SSEP: Free boundaries.

Main features.

- Topological interactions

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., ... \& Zdravkovic, V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232-1237, (2008).

- Interaction is highly non local: perturbation of the SEP ($L=L_{0}+\varepsilon j\left[L_{r}+L_{\ell}\right]$) but $L_{r}+L_{\ell}$ are non local (need to find the last particle and the first hole). The usual techniques do not apply.
- Hydrodynamic limits with boundary conditions on derivatives

SSEP: Free boundaries.

Main features.

- Topological interactions

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., ... \& Zdravkovic, V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232-1237, (2008).

- Interaction is highly non local: perturbation of the SEP ($L=L_{0}+\varepsilon j\left[L_{r}+L_{\ell}\right]$) but $L_{r}+L_{\ell}$ are non local (need to find the last particle and the first hole). The usual techniques do not apply.
- Hydrodynamic limits with boundary conditions on derivatives

Key remark.

> Deaths and births happen at exponential times of parameter $j \varepsilon$ independently of the particle configuration.

B_{t} number of rightmost particles removed in the time $[0, t]$
A_{t} number of leftmost holes removed in the time $[0, t]$
are independent Poisson processes both of intensity εj.

Key remark.

Deaths and births happen at exponential times of parameter $j \varepsilon$ independently of the particle configuration.
B_{t} number of rightmost particles removed in the time $[0, t]$
A_{t} number of leftmost holes removed in the time $[0, t]$
are independent Poisson processes both of intensity εj.

Key remark.

Deaths and births happen at exponential times of parameter $j \varepsilon$ independently of the particle configuration.
B_{t} number of rightmost particles removed in the time $[0, t]$
A_{t} number of leftmost holes removed in the time $[0, t]$
are independent Poisson processes both of intensity εj.

Key remark.

Deaths and births happen at exponential times of parameter $j \varepsilon$ independently of the particle configuration.
B_{t} number of rightmost particles removed in the time $[0, t]$
A_{t} number of leftmost holes removed in the time $[0, t]$
are independent Poisson processes both of intensity εj.

Median

The median M is the point such: \# of holes to the left of $M=\#$ of particles to the right of M.

The median M performs a nearest neighbor random walk at rate εj

Median

The median M is the point such: \# of holes to the left of $M=\#$ of particles to the right of M.

The median M performs a nearest neighbor random walk at rate εj

Invariant measure

Process $\left\{\tilde{\eta}_{t}\right\}_{t \geq 0}$ seen from the median M :
 $$
\tilde{\eta}_{t}=\theta_{M\left(\eta_{t}\right)} \eta_{t}
$$
 $$
\theta=\text { the translation }\left(\theta_{y} \eta\right)(x)=\eta(x-y)
$$

Theorem

For anv $j_{\varepsilon}>0$ the process $\tilde{\eta}_{t}$ has a unique invariant measure $\mu_{j \varepsilon}$ and

$$
E_{\mu_{j \varepsilon}}[X(\eta)-Y(\eta)+1]=\frac{1}{2 j \varepsilon}
$$

Proof: there is a Lyapunov function.

Invariant measure

Process $\left\{\tilde{\eta}_{t}\right\}_{t \geq 0}$ seen from the median M :

$$
\begin{aligned}
\tilde{\eta}_{t} & =\theta_{M\left(\eta_{t}\right)} \eta_{t} \\
\theta=\text { the translation }\left(\theta_{y} \eta\right)(x) & =\eta(x-y)
\end{aligned}
$$

Theorem

For any $j \varepsilon>0$ the process $\tilde{\eta}_{t}$ has a unique invariant measure $\mu_{j \varepsilon}$ and

Proof: there is a Lyapunov function.

Invariant measure

Process $\left\{\tilde{\eta}_{t}\right\}_{t \geq 0}$ seen from the median M :

$$
\tilde{\eta}_{t}=\theta_{M\left(\eta_{t}\right)} \eta_{t}
$$

$\theta=$ the translation $\left(\theta_{y} \eta\right)(x)=\eta(x-y)$

Theorem

For any $j \varepsilon>0$ the process $\tilde{\eta}_{t}$ has a unique invariant measure $\mu_{j \varepsilon}$ and

$$
E_{\mu_{j \varepsilon}}[X(\eta)-Y(\eta)+1]=\frac{1}{2 j \varepsilon}
$$

Proof: there is a Lyapunov function.

Invariant measure

Process $\left\{\tilde{\eta}_{t}\right\}_{t \geq 0}$ seen from the median M :

$$
\tilde{\eta}_{t}=\theta_{M\left(\eta_{t}\right)} \eta_{t}
$$

$\theta=$ the translation $\left(\theta_{y} \eta\right)(x)=\eta(x-y)$

Theorem

For any $j \varepsilon>0$ the process $\tilde{\eta}_{t}$ has a unique invariant measure $\mu_{j \varepsilon}$ and

$$
E_{\mu_{j \varepsilon}}[X(\eta)-Y(\eta)+1]=\frac{1}{2 j \varepsilon}
$$

Proof: there is a Lyapunov function.

Number of sites between the first hole and the last particle = $\mathbf{X}(\eta)-\mathbf{Y}(\eta)+\mathbf{1}$ scales as $(\mathbf{2 j} \varepsilon)^{-\mathbf{1}}$ in equilibrium.
Fick's law: the stationary current flowing in $[Y, X]$ when at the
end points the densities are $\rho_{\text {left }}$ and $\rho_{\text {right }}$ is

$J=\varepsilon j, \rho_{\text {left }}=1$ and $\rho_{\text {right }}=0$ implies $X-Y \sim \varepsilon^{-1}$
The validity of Fick's law in our case is however not obvious as the endpoints $X\left(\eta_{t}\right)$ and $Y\left(\eta_{t}\right)$ depend on time. (Further discussions on this later).

Number of sites between the first hole and the last particle = $\mathbf{X}(\eta)-\mathbf{Y}(\eta)+\mathbf{1}$ scales as $(\mathbf{2 j} \varepsilon)^{-\mathbf{1}}$ in equilibrium.
Fick's law: the stationary current flowing in $[Y, X]$ when at the end points the densities are $\rho_{\text {left }}$ and $\rho_{\text {right }}$ is

$$
J=-\frac{1}{2} \frac{\rho_{\text {left }}-\rho_{\text {right }}}{X-Y}=-\frac{1}{2} \frac{1}{X-Y}
$$

The validity of Fick's law in our case is however not obvious as the endpoints $X\left(\eta_{t}\right)$ and $Y\left(\eta_{t}\right)$ depend on time. (Further discussions on this later).

Number of sites between the first hole and the last particle $=$ $\mathbf{X}(\eta)-\mathbf{Y}(\eta)+\mathbf{1}$ scales as $(\mathbf{2} \mathbf{j} \varepsilon)^{-\mathbf{1}}$ in equilibrium.
Fick's law: the stationary current flowing in $[Y, X]$ when at the end points the densities are $\rho_{\text {left }}$ and $\rho_{\text {right }}$ is

$$
\begin{array}{r}
J=-\frac{1}{2} \frac{\rho_{\text {left }}-\rho_{\text {right }}}{X-Y}=-\frac{1}{2} \frac{1}{X-Y} \\
J=\varepsilon j, \rho_{\text {left }}=1 \text { and } \rho_{\text {right }}=0 \text { implies } X-Y \sim \varepsilon^{-1}
\end{array}
$$

The validity of Fick's law in our case is however not obvious as the endpoints $X\left(\eta_{t}\right)$ and $Y\left(\eta_{t}\right)$ depend on time.
(Further discussions on this later).

Initial condition. $\rho_{0} \in C(\mathbb{R},[0,1])$ such that there is $L_{0}<0$ and $R_{0}>0$ so that $\rho_{0}(r)=0, \forall r \geq R_{0}, \rho_{0}(r)=1, \forall r \leq L_{0}$.

Initial configuration η_{0} approximates the profile ρ_{0} and also

$$
\varepsilon Y(\eta)-L_{0}\left|+\left|\varepsilon X(\eta)-R_{0}\right| \leq \varepsilon^{a}, \quad a>0\right. \text { small }
$$

Theorem

There is a function $p_{t}(r) \in[0,1], r \in \mathbb{R}$ so that

The boundaries L_{t} and R_{t} are finite.

$$
R_{t}=\sup \left\{r: p_{t}(r)=1\right\}, \quad L_{t}=\inf \left\{r: p_{t}(r)=0\right\}
$$

Initial condition. $\rho_{0} \in C(\mathbb{R},[0,1])$ such that there is $L_{0}<0$ and $R_{0}>0$ so that $\rho_{0}(r)=0, \forall r \geq R_{0}, \rho_{0}(r)=1, \forall r \leq L_{0}$.
Initial configuration η_{0} approximates the profile ρ_{0} and also

$$
\left|\varepsilon Y(\eta)-L_{0}\right|+\left|\varepsilon X(\eta)-R_{0}\right| \leq \varepsilon^{a}, \quad a>0 \text { small }
$$

Hydrodynamic limit for SEP with free boundary.

Initial condition. $\rho_{0} \in C(\mathbb{R},[0,1])$ such that there is $L_{0}<0$ and $R_{0}>0$ so that $\rho_{0}(r)=0, \forall r \geq R_{0}, \rho_{0}(r)=1, \forall r \leq L_{0}$.
Initial configuration η_{0} approximates the profile ρ_{0} and also

$$
\left|\varepsilon Y(\eta)-L_{0}\right|+\left|\varepsilon X(\eta)-R_{0}\right| \leq \varepsilon^{a}, \quad a>0 \text { small }
$$

Theorem

There is a function $\rho_{t}(r) \in[0,1], r \in \mathbb{R}$ so that

$$
\lim _{\varepsilon \rightarrow 0} P_{\eta_{0}}\left(\sup _{r}\left|\mathcal{M}_{\ell}\left(r, \eta_{\varepsilon^{-2} t}\right)-\rho_{t}(r)\right| \leq \varepsilon^{a}\right)=1
$$

The boundaries L_{t} and R_{t} are finite.

$$
R_{t}=\sup \left\{r: \rho_{t}(r)=1\right\}, \quad L_{t}=\inf \left\{r: \rho_{t}(r)=0\right\}
$$

Identification of the limit (heuristics)

Call D_{r} the Dirac delta at r.

$$
\begin{array}{cl}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{L_{t}}-j D_{R_{t}}, & r \in\left[L_{t}, R_{t}\right] \\
\rho\left(R_{t}, t\right) & =0, \quad \rho\left(L_{t}, t\right)=1, \quad \rho(r, 0)=\rho_{0}(r)
\end{array}
$$

For any test function $\phi(r, t)$:

$$
\int \phi \rho_{t}=\int \frac{1}{2} \phi_{r r} \rho+j \phi\left(L_{t}, t\right)-j \phi\left(R_{t}, t\right)
$$

Assume ρ smooth, integrate by parts and use boundary conditions:

$$
\int \frac{1}{2} \phi_{r r} \rho=\frac{1}{2} \int \phi \rho_{r r}+\frac{1}{2}\left[\phi\left(L_{t}, t\right) \rho_{r}\left(L_{t}, t\right)-\phi\left(R_{t}, t\right) \rho_{r}\left(R_{t}, t\right)\right]
$$

Identification of the limit (heuristics)

Call $\mathbf{D}_{\mathbf{r}}$ the Dirac delta at r.

$$
\begin{array}{cl}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{L_{t}}-j D_{R_{t}}, & r \in\left[L_{t}, R_{t}\right] \\
\rho\left(R_{t}, t\right)=0, & \rho\left(L_{t}, t\right)=1,
\end{array} \quad \rho(r, 0)=\rho_{0}(r)
$$

For any test function $\phi(r, t)$:

Assume ρ smooth, integrate by parts and use boundary conditions:

Identification of the limit (heuristics)

Call $\mathbf{D}_{\mathbf{r}}$ the Dirac delta at r.

$$
\begin{array}{cl}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{L_{t}}-j D_{R_{t}}, & r \in\left[L_{t}, R_{t}\right] \\
\rho\left(R_{t}, t\right)=0, & \rho\left(L_{t}, t\right)=1,
\end{array} \quad \rho(r, 0)=\rho_{0}(r)
$$

For any test function $\phi(r, t)$:

Assume ρ smooth, integrate by parts and use boundary conditions:

Identification of the limit (heuristics)

Call $\mathbf{D}_{\mathbf{r}}$ the Dirac delta at r.

$$
\begin{array}{cl}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{L_{t}}-j D_{R_{t}}, & r \in\left[L_{t}, R_{t}\right] \\
\rho\left(R_{t}, t\right)=0, & \rho\left(L_{t}, t\right)=1,
\end{array} \quad \rho(r, 0)=\rho_{0}(r)
$$

For any test function $\phi(r, t)$:

$$
\int \phi \rho_{t}=\int \frac{1}{2} \phi_{r r} \rho+j \phi\left(L_{t}, t\right)-j \phi\left(R_{t}, t\right)
$$

Assume ρ smooth, integrate by parts and use boundary conditions:

Identification of the limit (heuristics)

Call \mathbf{D}_{r} the Dirac delta at r.

$$
\begin{array}{cl}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{L_{t}}-j D_{R_{t}}, & r \in\left[L_{t}, R_{t}\right] \\
\rho\left(R_{t}, t\right)=0, \quad \rho\left(L_{t}, t\right)=1, \quad \rho(r, 0)=\rho_{0}(r)
\end{array}
$$

For any test function $\phi(r, t)$:

$$
\int \phi \rho_{t}=\int \frac{1}{2} \phi_{r r} \rho+j \phi\left(L_{t}, t\right)-j \phi\left(R_{t}, t\right)
$$

Assume ρ smooth, integrate by parts and use boundary conditions:

Identification of the limit (heuristics)

Call \mathbf{D}_{r} the Dirac delta at r.

$$
\begin{array}{cl}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{L_{t}}-j D_{R_{t}}, & r \in\left[L_{t}, R_{t}\right] \\
\rho\left(R_{t}, t\right)=0, \quad \rho\left(L_{t}, t\right)=1, \quad \rho(r, 0)=\rho_{0}(r)
\end{array}
$$

For any test function $\phi(r, t)$:

$$
\int \phi \rho_{t}=\int \frac{1}{2} \phi_{r r} \rho+j \phi\left(L_{t}, t\right)-j \phi\left(R_{t}, t\right)
$$

Assume ρ smooth, integrate by parts and use boundary conditions:

$$
\int \frac{1}{2} \phi_{r r} \rho=\frac{1}{2} \int \phi \rho_{r r}+\frac{1}{2}\left[\phi\left(L_{t}, t\right) \rho_{r}\left(L_{t}, t\right)-\phi\left(R_{t}, t\right) \rho_{r}\left(R_{t}, t\right)\right]
$$

$$
\begin{aligned}
\int \phi \rho_{t} & =\int \frac{1}{2} \phi \rho_{r r} \\
& +\phi\left(L_{t}, t\right)\left[j+\frac{1}{2} \rho_{r}\left(L_{t}, t\right)\right] \\
& -\phi\left(R_{t}, t\right)\left[j+\frac{1}{2} \rho_{r}\left(R_{t}, t\right)\right]
\end{aligned}
$$

We then end up with

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right) \\
& \rho\left(L_{t}, t\right)=1, \rho\left(R_{t}, t\right)=0, \quad \rho(r, 0) \quad \text { given } \\
& \frac{\partial \rho}{\partial r}\left(L_{t}, t\right)=\frac{\partial \rho}{\partial r}\left(R_{t}, t\right)=-2 j
\end{aligned}
$$

$$
\begin{aligned}
\int \phi \rho_{t} & =\int \frac{1}{2} \phi \rho_{r r} \\
& +\phi\left(L_{t}, t\right)\left[j+\frac{1}{2} \rho_{r}\left(L_{t}, t\right)\right] \\
& -\phi\left(R_{t}, t\right)\left[j+\frac{1}{2} \rho_{r}\left(R_{t}, t\right)\right]
\end{aligned}
$$

We then end up with

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right) \\
\rho\left(L_{t}, t\right)=1, \rho\left(R_{t}, t\right)=0, \quad \rho(r, 0) \quad \text { given } \\
\frac{\partial \rho}{\partial r}\left(L_{t}, t\right)=\frac{\partial \rho}{\partial r}\left(R_{t}, t\right)=-2 j
\end{array}
$$

Macroscopic free boundary problem

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}} \quad r \in\left(L_{t}, R_{t}\right), \\
\rho\left(L_{t}, t\right)=1, \quad \rho\left(R_{t}, t\right)=0, \quad \rho(r, 0) \quad \text { given } \tag{1}\\
\frac{\partial \rho}{\partial r}\left(L_{t}, t\right)=\frac{\partial \rho}{\partial r}\left(R_{t}, t\right)=-2 j
\end{gather*}
$$

It seems over-determined (too many b.c.) but is is not.
Fixed point problem: Given L_{t} and R_{t} find $\rho(r, t)$ which solves the heat equation with b.c. (1).

Determine L_{t} and R_{t} so that the spatial derivative of ρ at these points are equal to $-2 j$.

Macroscopic free boundary problem

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}} \quad r \in\left(L_{t}, R_{t}\right), \\
\rho\left(L_{t}, t\right)=1, \quad \rho\left(R_{t}, t\right)=0, \quad \rho(r, 0) \quad \text { given } \tag{1}\\
\frac{\partial \rho}{\partial r}\left(L_{t}, t\right)=\frac{\partial \rho}{\partial r}\left(R_{t}, t\right)=-2 j
\end{gather*}
$$

It seems over-determined (too many b.c.) but is is not.
Fixed point problem: Given L_{t} and R_{t} find $\rho(r, t)$ which solves the heat equation with b.c. (1).

Determine L_{t} and P_{t} so that the spatial derivative of ρ at these points are equal to $-2 j$.

Macroscopic free boundary problem

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right), \\
\rho\left(L_{t}, t\right)=1, \quad \rho\left(R_{t}, t\right)=0, \quad \rho(r, 0) \quad \text { given } \tag{1}\\
\frac{\partial \rho}{\partial r}\left(L_{t}, t\right)=\frac{\partial \rho}{\partial r}\left(R_{t}, t\right)=-2 j
\end{gather*}
$$

It seems over-determined (too many b.c.) but is is not.
Fixed point problem: Given L_{t} and R_{t} find $\rho(r, t)$ which solves the heat equation with b.c. (1).

Determine L_{t} and R_{t} so that the spatial derivative of ρ at these points are equal to $-2 j$.

Macroscopic free boundary problem

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right), \\
\rho\left(L_{t}, t\right)=1, \quad \rho\left(R_{t}, t\right)=0, \quad \rho(r, 0) \quad \text { given } \tag{1}\\
\frac{\partial \rho}{\partial r}\left(L_{t}, t\right)=\frac{\partial \rho}{\partial r}\left(R_{t}, t\right)=-2 j
\end{gather*}
$$

It seems over-determined (too many b.c.) but is is not.
Fixed point problem: Given L_{t} and R_{t} find $\rho(r, t)$ which solves the heat equation with b.c. (1).

Determine L_{t} and R_{t} so that the spatial derivative of ρ at these points are equal to $-2 j$.

Reduction to the classical Stefan problem.

By "differentiating" $\rho\left(L_{t}, t\right)=1$ and $\rho\left(R_{t}, t\right)=0$ we get

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(L_{t}, t\right), \quad \frac{d R_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(R_{t}, t\right)
$$

Define $u=\rho_{r}$

This is now the classical Stefan problem: a diffusive equation with Dirichlet b.c., on an interval whose endpoints evolve with velocity determined by the derivative of the solution. To recover ρ we set

Reduction to the classical Stefan problem.

By "differentiating" $\rho\left(L_{t}, t\right)=1$ and $\rho\left(R_{t}, t\right)=0$ we get

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(L_{t}, t\right), \quad \frac{d R_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(R_{t}, t\right)
$$

Define $u=\rho_{r}$

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right), \quad u\left(L_{t}, t\right)=-2 j=u\left(R_{t}, t\right)
$$

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial u}{\partial r}\left(L_{t}, t\right), \quad \frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial u}{\partial r}\left(R_{t}, t\right)
$$

This is now the classical Stefan problem: a diffusive equation with Dirichlet b.c., on an interval whose endpoints evolve with velocity determined by the derivative of the solution. To recover ρ we set

Reduction to the classical Stefan problem.

By "differentiating" $\rho\left(L_{t}, t\right)=1$ and $\rho\left(R_{t}, t\right)=0$ we get

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(L_{t}, t\right), \quad \frac{d R_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(R_{t}, t\right)
$$

Define $u=\rho_{r}$

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right), \quad u\left(L_{t}, t\right)=-2 j=u\left(R_{t}, t\right)
$$

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial u}{\partial r}\left(L_{t}, t\right), \quad \frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial u}{\partial r}\left(R_{t}, t\right)
$$

This is now the classical Stefan problem: a diffusive equation with Dirichlet b.c., on an interval whose endpoints evolve with velocity determined by the derivative of the solution.

Reduction to the classical Stefan problem.

By "differentiating" $\rho\left(L_{t}, t\right)=1$ and $\rho\left(R_{t}, t\right)=0$ we get

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(L_{t}, t\right), \quad \frac{d R_{t}}{d t}=\frac{1}{4 j} \frac{\partial^{2} \rho}{\partial r^{2}}\left(R_{t}, t\right)
$$

Define $u=\rho_{r}$

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial r^{2}}, \quad r \in\left(L_{t}, R_{t}\right), \quad u\left(L_{t}, t\right)=-2 j=u\left(R_{t}, t\right)
$$

$$
\frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial u}{\partial r}\left(L_{t}, t\right), \quad \frac{d L_{t}}{d t}=\frac{1}{4 j} \frac{\partial u}{\partial r}\left(R_{t}, t\right)
$$

This is now the classical Stefan problem: a diffusive equation with Dirichlet b.c., on an interval whose endpoints evolve with velocity determined by the derivative of the solution. To recover ρ we set

$$
\rho(r, t):=-\int_{r}^{R_{t}} u\left(r^{\prime}, t\right) d r^{\prime}, \quad r \in\left[L_{t}, R_{t}\right]
$$

Some references.

- Hubert Lacoin (2013) The scaling limit of polymer pinning dynamics and a one dimensional Stefan freezing problem.
- Claudio Landim; Glauco Valle. (2006) A microscopic model for Stefan's melting and freezing problem.

Independent particles with births and deaths.

(G. Carinci, C. Giardina, DM, E. Presutti)

Independent random walks in $\left[0, \varepsilon^{-1}\right] \cap \mathbb{Z}$ (jumps outside suppressed).

At rate $j \varepsilon$ a new particle is created at 0,
At rate $j \varepsilon$ the rightmost particle is deleted

Generator

$\varepsilon^{-1} \in \mathbb{N},\left[0, \varepsilon^{-1}\right] \equiv\left[0, \varepsilon^{-1}\right] \cap \mathbb{Z} \quad \xi \in\left[0, \varepsilon^{-1}\right]^{\mathbb{N}}$
$\xi(x)=$ number of particles at $x, \quad x \in\left[0, \varepsilon^{-1}\right]$

Generator: $L=L_{0}+j \varepsilon\left[L_{a}+L_{d}\right]: L_{0}=$ generator of the independent symmetric random walks
$L_{a}=$ add a particle at the origin

$$
L_{a} f(\xi)=f\left(\xi+\mathbf{1}_{0}\right)-f(\xi)
$$

$L_{d}=$ remove a particle at the rightmost occupied site

$$
L_{6} f(\xi)-f(\xi-\mathbf{1} x)-f(\xi)
$$

Generator

$$
\begin{aligned}
& \varepsilon^{-1} \in \mathbb{N},\left[0, \varepsilon^{-1}\right] \equiv\left[0, \varepsilon^{-1}\right] \cap \mathbb{Z} \quad \xi \in\left[0, \varepsilon^{-1}\right]^{\mathbb{N}} \\
& \xi(x)=\text { number of particles at } x, \quad x
\end{aligned}
$$

Generator: $L=L_{0}+j \varepsilon\left[L_{a}+L_{d}\right]: L_{0}=$ generator of the independent symmetric random walks
$L_{a}=$ add a particle at the origin

$$
L_{a} f(\xi)=f\left(\xi+\mathbf{1}_{0}\right)-f(\xi)
$$

$L_{d}=$ remove a particle at the rightmost occupied site

$$
L_{b} f(\xi)=f\left(\xi-\mathbf{1}_{X}\right)-f(\xi)
$$

Generator

$$
\begin{aligned}
\varepsilon^{-1} \in \mathbb{N},\left[0, \varepsilon^{-1}\right] \equiv\left[0, \varepsilon^{-1}\right] \cap \mathbb{Z} \quad \xi \in\left[0, \varepsilon^{-1}\right]^{\mathbb{N}} \\
\xi(x)=\text { number of particles at } x, \quad x \in\left[0, \varepsilon^{-1}\right]
\end{aligned}
$$

Generator: $L=L_{0}+j \varepsilon\left[L_{a}+L_{d}\right]$: $L_{0}=$ generator of the independent symmetric random walks
$L_{a}=$ add a particle at the origin

$$
L_{a} f(\xi)=f\left(\xi+\mathbf{1}_{0}\right)-f(\xi)
$$

$L_{d}=$ remove a particle at the rightmost occupied site

$$
\begin{gathered}
L_{b} f(\xi)=f\left(\xi-\mathbf{1}_{X}\right)-f(\xi) \\
X: \xi(X)>0, \quad \xi(y)=0 \quad \forall y>X
\end{gathered}
$$

Hydrodynamic limit.

Theorem

$\exists \rho_{t}=\rho_{t}(r), r \in[0,1], t \geq 0$, non negative and in L^{1} such that " $\xi_{\varepsilon^{-2} t}$ converges to ρ_{t} weakly" which means:

$$
\lim _{\varepsilon \rightarrow 0} P_{\xi}^{(\varepsilon)}\left[\max _{x \in\left[0, \varepsilon^{-1}\right]}\left|\varepsilon F_{\varepsilon}\left(x ; \xi_{\varepsilon^{-2}}\right)-F\left(\varepsilon x ; \rho_{t}\right)\right|>\zeta\right]=0
$$

for any $\zeta>0$.

$$
F_{\varepsilon}(x ; \xi):=\sum_{y=x}^{\varepsilon^{-1}} \xi(y) ; \quad F(r ; \rho):=\int_{r}^{1} \rho\left(r^{\prime}\right) d r^{\prime}
$$

proved in [CDGP] under suitable assumptions on the initial datum.

Strategy: inequalities

When a particle dies it is retained becoming a "ghost".
Ghost and true particles together are independent random walks

We thus know well the overall configuration at a time $T=\varepsilon^{-2} \delta$; to get the true particles configuration we must "guess" which are the ghosts and delete them.
N, the random number of ghosts at time T, is an independent Poisson variable of mean $j T$.

Natural candidates for the ghosts:
(i) the N rightmost particles at time T
(ii) the N particles at time T which were the rightmost particles at time 0 .

They are both incorrect yet are lower and upper bounds (in a suitable topology) which become accurate as first $\varepsilon \rightarrow 0$ and then $\delta \rightarrow 0$.

Strategy: inequalities

When a particle dies it is retained becoming a "ghost". Ghost and true particles together are independent random walks

We thus know well the overall configuration at a time $T=\varepsilon^{-2} \delta$; to get the true particles configuration we must "guess" which are the ghosts and delete them.
N, the random number of ghosts at time T, is an independent Poisson variable of mean $j T$.

Natural candidates for the ghosts:
(i) the N rightmost particles at time T
(ii) the N particles at time T which were the rightmost particles at time 0 .

They are both incorrect yet are lower and upper bounds (in a suitable topology) which become accurate as first $\varepsilon \rightarrow 0$ and then $\delta \rightarrow 0$.

Strategy: inequalities

When a particle dies it is retained becoming a "ghost".
Ghost and true particles together are independent random walks

We thus know well the overall configuration at a time $T=\varepsilon^{-2} \delta$; to get the true particles configuration we must "guess" which are the ghosts and delete them.

Strategy: inequalities

When a particle dies it is retained becoming a "ghost".
Ghost and true particles together are independent random walks

We thus know well the overall configuration at a time $T=\varepsilon^{-2} \delta$; to get the true particles configuration we must "guess" which are the ghosts and delete them.
N, the random number of ghosts at time T, is an independent Poisson variable of mean $j T$.

Natural candidates for the ghosts: (i) the N rightmost particles at time T (ii) the N particles at time T which were the rightmost particles at time 0 .

They are both incorrect yet are lower and upper bounds (in a suitable topology) which become accurate as first $\varepsilon \rightarrow 0$ and then $\delta \rightarrow 0$.

Strategy: inequalities

When a particle dies it is retained becoming a "ghost".
Ghost and true particles together are independent random walks

We thus know well the overall configuration at a time $T=\varepsilon^{-2} \delta$; to get the true particles configuration we must "guess" which are the ghosts and delete them.
N, the random number of ghosts at time T, is an independent Poisson variable of mean $j T$.

Natural candidates for the ghosts:
(i) the N rightmost particles at time T
(ii) the N particles at time T which were the rightmost particles at time 0 .

Strategy: inequalities

When a particle dies it is retained becoming a "ghost".
Ghost and true particles together are independent random walks

We thus know well the overall configuration at a time $T=\varepsilon^{-2} \delta$; to get the true particles configuration we must "guess" which are the ghosts and delete them.
N, the random number of ghosts at time T, is an independent Poisson variable of mean $j T$.
Natural candidates for the ghosts:
(i) the N rightmost particles at time T
(ii) the N particles at time T which were the rightmost particles at time 0 .

They are both incorrect yet are lower and upper bounds (in a suitable topology) which become accurate as first $\varepsilon \rightarrow 0$ and then $\delta \rightarrow 0$.

Identification of the limit (heuristics)

If $j=0$ (i.e. no births and deaths):

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}},\left.\quad \frac{\partial \rho}{\partial r}\right|_{0}=\left.\frac{\partial \rho}{\partial r}\right|_{1}=0
$$

The heat equation with Neumann boundary conditions.
Adding births and deaths:

where D_{r} is the Dirac delta at r.
R_{t} the smallest point such that $\rho(r, t)=0$ for $r>R_{t}$ (supposing $R_{0}<1$ and t small).

Identification of the limit (heuristics)

If $j=0$ (i.e. no births and deaths):

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}},\left.\quad \frac{\partial \rho}{\partial r}\right|_{0}=\left.\frac{\partial \rho}{\partial r}\right|_{1}=0
$$

The heat equation with Neumann boundary conditions. Adding births and deaths:

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{0}-j D_{R_{t}}, \quad r \in\left[0, R_{t}\right]
$$

where D_{r} is the Dirac delta at r.
R_{t} the smallest point such that $\rho(r, t)=0$ for $r>R_{t}$
(supposing $R_{0}<1$ and t small).

Identification of the limit (heuristics)

If $j=0$ (i.e. no births and deaths):

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}},\left.\quad \frac{\partial \rho}{\partial r}\right|_{0}=\left.\frac{\partial \rho}{\partial r}\right|_{1}=0
$$

The heat equation with Neumann boundary conditions. Adding births and deaths:

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+j D_{0}-j D_{R_{t}}, \quad r \in\left[0, R_{t}\right]
$$

where D_{r} is the Dirac delta at r.
R_{t} the smallest point such that $\rho(r, t)=0$ for $r>R_{t}$ (supposing $R_{0}<1$ and t small).

Replace Neumann condition by symmetry under reflection around 0 :

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+2 j D_{0}-j D_{R_{t}}-j D_{-R_{t}}, \quad r \in\left[-R_{t}, R_{t}\right],
$$

- $\rho(r, t)=\rho(-r, t)$
- $\rho\left(R_{t}, t\right)=0$
- $\rho(r, 0)=\rho_{\text {init }}(r)$

For any test function $\phi(r, t)$:

Replace Neumann condition by symmetry under reflection around 0 :

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}+2 j D_{0}-j D_{R_{t}}-j D_{-R_{t}}, \quad r \in\left[-R_{t}, R_{t}\right],
$$

- $\rho(r, t)=\rho(-r, t)$
- $\rho\left(R_{t}, t\right)=0$
- $\rho(r, 0)=\rho_{\text {init }}(r)$

For any test function $\phi(r, t)$:

$$
-\int \phi_{t} \rho=\int \frac{1}{2} \phi_{r r} \rho+j(2 \phi(0, t)-\phi(R(t), t)-\phi(-R(t), t))
$$

$$
-\int \phi_{t} \rho=\int \frac{1}{2} \phi_{r r} \rho+j(2 \phi(0, t)-\phi(R(t), t)-\phi(-R(t), t))
$$

Classical solutions. If there is a solution $\rho(r, t)$ which is smooth in ($0, R_{t}$), then (integrating by parts)

$$
\frac{\partial \rho}{\partial t}=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad \rho\left(R_{t}, t\right)=0,\left.\frac{\partial \rho}{\partial r}\right|_{r=0^{+}}=\left.\frac{\partial \rho}{\partial r}\right|_{r=R_{t}^{-}}=-2 j
$$

Fixed point problem: Given R_{t} we find $\rho(r, t)$ which solves the heat equation with 0 boundary conditions at $\pm R_{t}$.

Determine R_{t} so that the derivative at R_{t} is equal to $-2 j$.

Existence follows by reducing to the classical Stefan problem. By differentiating $\rho\left(R_{t}, t\right)=0$:

$$
\dot{R}_{t}=\left.j^{-1} \frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}\right|_{r=R_{t}^{-}}
$$

Define: $u:=\frac{\partial \rho}{\partial r}$, then

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial r^{2}}, \quad u(0, t)=u\left(R_{t}, t\right)=-j
$$

with $u(r, 0)=\frac{\partial \rho_{\text {init }}}{\partial r}$ and

$$
\dot{R}_{t}=-\left.j^{-1} \frac{1}{2} \frac{\partial u}{\partial r}\right|_{r=R_{t}^{-}}
$$

One can then check that $\rho(r, t):=-\int_{r}^{R_{t}} u(r, t)$ solves the original problem.

Weak solutions, via barriers

$K^{(\delta)} \rho$ "the cut and paste map" acting on ρ :

The mass in shaded areas are $=j \delta$, mass on the right is moved to the origin

$$
\mathbf{K}^{(\delta)} \mathbf{u}=\mathbf{j} \delta \mathbf{D}_{\mathbf{0}}+\mathbf{u} \mathbf{1}_{\mathbf{r} \in\left[0, \mathbf{R}_{\delta}(\mathbf{u})\right]}
$$

$R_{\delta}(u)$ such that $\int_{R_{\delta}}^{1} u(r) d r=j \delta$.

The barriers.

$G_{\delta}^{\text {neum }}\left(r, r^{\prime}\right)=$ Green function of the heat equation in $[0,1]$ with Neumann boundary conditions:

$$
G_{t}^{\text {neum }}\left(r, r^{\prime}\right)=\sum_{k} G_{t}\left(r, r_{k}^{\prime}\right), \quad G_{t}\left(r, r^{\prime}\right)=\frac{e^{-\left(r-r^{\prime}\right)^{2} / 2 t}}{\sqrt{2 \pi t}}
$$

r_{k}^{\prime} being the images of r^{\prime} under repeated reflections of the interval $[0,1]$.

The barriers.

$G_{\delta}^{\text {neum }}\left(r, r^{\prime}\right)=$ Green function of the heat equation in $[0,1]$ with Neumann boundary conditions:

$$
G_{t}^{\text {neum }}\left(r, r^{\prime}\right)=\sum_{k} G_{t}\left(r, r_{k}^{\prime}\right), \quad G_{t}\left(r, r^{\prime}\right)=\frac{e^{-\left(r-r^{\prime}\right)^{2} / 2 t}}{\sqrt{2 \pi t}}
$$

r_{k}^{\prime} being the images of r^{\prime} under repeated reflections of the interval $[0,1]$.

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{n} \delta}^{(\delta,-)}(\rho):=K^{(\delta)} G_{\delta}^{\text {neum }} \cdots K^{(\delta)} G_{\delta}^{\text {neum }} \rho \\
& (n \text { times }) \\
& \mathbf{S}_{\mathbf{n} \delta}^{(\delta,+)}(\rho):=G_{\delta}^{\text {neum }} K^{(\delta)} \cdots G_{\delta}^{\text {neum }} K^{(\delta)} \rho \quad(n \text { times })
\end{aligned}
$$

Mass trasport inequalities.

Call $F(r ; u):=\int_{r}^{1} u(r) d r, \quad u \geq 0$

Definition

$$
u \leq v \quad \text { iff } \quad F(r ; u) \leq F(r ; v), \quad \forall r \in[0,1]
$$

$F(r ; u)$ is a non increasing function of r which starts at 0 from the total mass of $u: F(0 ; u)=\int_{0}^{1} u(r) d r$.

The graph of $F(r ; u)$ is "the interface of u " and $u \leq v$ means that the interface of v is not below the interface of u.

$$
\mathcal{U}=\left\{u=c D_{0}+\rho, c \geq 0, \rho \in L^{\infty}\left([0,1], \mathbb{R}_{+}\right)\right\}
$$

Mass trasport inequalities.

Call $F(r ; u):=\int_{r}^{1} u(r) d r, \quad u \geq 0$

Definition

$$
u \leq v \quad \text { iff } \quad F(r ; u) \leq F(r ; v), \quad \forall r \in[0,1]
$$

$F(r ; u)$ is a non increasing function of r which starts at 0 from the total mass of $u: F(0 ; u)=\int_{0}^{1} u(r) d r$.

The graph of $F(r ; u)$ is "the interface of u " and $u \leq v$ means that the interface of v is not below the interface of u.

$$
\mathcal{U}=\left\{u=c D_{0}+\rho, c \geq 0, \rho \in L^{\infty}\left([0,1], \mathbb{R}_{+}\right)\right\}
$$

Mass trasport inequalities.

Lemma

For any $\delta>0$ and any integer n

$$
S_{n \delta}^{(\delta,-)}(\rho) \leq S_{n \delta}^{(\delta,+)}(\rho)
$$

(it is better to do the cut and paste earlier)

Actually we prove that for all δ, δ^{\prime} and t such that $t=k \delta=k^{\prime} \delta^{\prime}$:

$$
S_{t}^{(\delta,-)}(u) \leq S_{t}^{\left(\delta^{\prime},+\right)}(u)
$$

Weak solution via barriers.

Definition. ρ_{t} is a weak solution in the sense of barriers if $\rho_{0}=u$ and for any δ and n :

$$
S_{n \delta}^{(\delta,-)}(u) \leq \rho_{n \delta} \leq S_{n \delta}^{(\delta,+)}(u)
$$

> Theorem
> Under suitable assumption on $\rho_{\text {init }}$ there is a unique weak solution ρ_{t} (in the sense of barriers) with $\rho_{0}=\rho_{\text {init }}$.

Weak solution via barriers.

Definition. ρ_{t} is a weak solution in the sense of barriers if $\rho_{0}=u$ and for any δ and n :

$$
S_{n \delta}^{(\delta,-)}(u) \leq \rho_{n \delta} \leq S_{n \delta}^{(\delta,+)}(u)
$$

Theorem

Under suitable assumption on $\rho_{\text {init }}$ there is a unique weak solution ρ_{t} (in the sense of barriers) with $\rho_{0}=\rho_{\text {init }}$.

Theorem

Under suitable assumption on $\rho_{\text {init }}$ the hydro-limit ρ_{t} of $\xi_{\varepsilon^{-2} t}$ is the unique weak solution (in the sense of barriers).
(precise statement later)

Theorem 2. Classical solutions are weak solutions.
Work in progress. Different strategies: P.Ferrari (use
approximation via harmonic lattice maps), S. Olla (control the limit of $S^{\delta, \pm}$ via expansion in δ) CGDP (use again inequalities proving that the classical solution is the hydro-limit of a particle system that is in between the barriers)

Hydrodynamic limit.

Theorem

Under suitable assumption on $\rho_{\text {init }}$ the hydro-limit ρ_{t} of $\xi_{\varepsilon^{-2} t}$ is the unique weak solution (in the sense of barriers).
(precise statement later)

Theorem 2. Classical solutions are weak solutions.

Work in progress. Different strategies: P.Ferrari (use
approximation via harmonic lattice maps), S. Olla (control the limit of $S^{\delta, \pm}$ via expansion in δ) CGDP (use again inequalities proving that the classical solution is the hydro-limit of a particle system that is in between the barriers)

Hydrodynamic limit.

Theorem

Under suitable assumption on $\rho_{\text {init }}$ the hydro-limit ρ_{t} of $\xi_{\varepsilon^{-2} t}$ is the unique weak solution (in the sense of barriers).
(precise statement later)

Theorem 2. Classical solutions are weak solutions.

Work in progress. Different strategies: P.Ferrari (use approximation via harmonic lattice maps), S. Olla (control the limit of $S^{\delta, \pm}$ via expansion in δ CGDP (use again inequalities proving that the classical solution is the hydro-limit of a particle system that is in between the barriers)
$\xi_{t}^{(\delta,-)}$ is defined as :

- independent random walks for $t<\varepsilon^{-2} \delta$; at $t=\varepsilon^{-2} \delta$
- cut the N_{-}rightmost particles and add N_{+}particles at 0 :
$\mathrm{N}_{ \pm}$being the number of particles created and deleted in the true process ξ_{t} for $t \in\left[0, \varepsilon^{-2} \delta\right]$.
By iteration it is defined for all $t=n \delta$.
$\xi_{t}^{(\delta,+)}$ is defined with same procedure but anticipating the cut
and paste.
namely at time 0^{+}we kill the n^{-}rightmost particles and create n^{+}new particles at 0 and then let evolve independently till $t \leq \varepsilon^{-2} \delta$, then iterate.
$\xi_{t}^{(\delta,-)}$ is defined as :
- independent random walks for $t<\varepsilon^{-2} \delta$; at $t=\varepsilon^{-2} \delta$
- cut the N_{-}rightmost particles and add N_{+}particles at 0 :
$\mathrm{N}_{ \pm}$being the number of particles created and deleted in the true process ξ_{t} for $t \in\left[0, \varepsilon^{-2} \delta\right]$.
By iteration it is defined for all $t=n \delta$.
is defined with same procedure but anticipating the cut
and paste.
namely at time 0^{+}we kill the n^{-}rightmost particles and create 7^{+}new particles at 0 and then let evolve independently till $t \leq \varepsilon^{-2} \delta$, then iterate.

Proofs.

$\xi_{t}^{(\delta,-)}$ is defined as :

- independent random walks for $t<\varepsilon^{-2} \delta$;
at $t=\varepsilon^{-2} \delta$
- cut the N_{-}rightmost particles and add N_{+}particles at 0 :
$\mathbf{N}_{ \pm}$being the number of particles created and deleted in the true process ξ_{t} for $t \in\left[0, \varepsilon^{-2} \delta\right]$.

By iteration it is defined for all $t=n \delta$.
$\xi_{t}^{(\delta,+)}$ is defined with same procedure but anticipating the cut and paste.
namely at time 0^{+}we kill the n^{-}rightmost particles and create n^{+}new particles at 0 and then let evolve independently till $t \leq \varepsilon^{-2} \delta$, then iterate....

The total number of particles

To define $N_{ \pm}$we use the random variable

$$
\left|\xi_{t}\right|=\text { total number of particles at time } t
$$

$\left|\xi_{t}\right|$ has the law of a random walk on \mathbb{N} which jumps with equal probability by ± 1 after an exponential time of parameter $j \varepsilon$, the jumps leading to -1 being suppressed.

The total number of particles

To define $N_{ \pm}$we use the random variable

$$
\left|\xi_{t}\right|=\text { total number of particles at time } t
$$

$\left|\xi_{t}\right|$ has the law of a random walk on \mathbb{N} which jumps with equal probability by ± 1 after an exponential time of parameter $j \varepsilon$, the jumps leading to -1 being suppressed.

$$
N_{k,+}=\# \text { upwards jumps of }\left|\xi_{s}\right| \text { for } s \in\left[k \varepsilon^{-2} \delta,(k+1) \varepsilon^{-2} \delta\right]
$$

$N_{k,-}=\#$ downwards jumps of $\left|\xi_{s}\right|$ for $s \in\left[k \varepsilon^{-2} \delta,(k+1) \varepsilon^{-2} \delta\right]$

$N_{k,+}^{0}, N_{k,-}^{0}$ independent Poisson variables with average $\varepsilon^{-1} j \delta$.

because if the independent clock rings at a time s and $\left|\xi_{s}\right|=0$, then at s there is no jump.

Definition (Assumptions on the initial particle configuration)

$N_{k,+}^{0}, N_{k,-}^{0}$ independent Poisson variables with average $\varepsilon^{-1} j \delta$.

$$
N_{k,+}=N_{k,+}^{0}, \quad N_{k,-} \leq N_{k,-}^{0}
$$

because if the independent clock rings at a time s and $\left|\xi_{s}\right|=0$, then at s there is no jump.

Definition (Assumptions on the initial particle configuration)

$N_{k,+}^{0}, N_{k,-}^{0}$ independent Poisson variables with average $\varepsilon^{-1} j \delta$.

$$
N_{k,+}=N_{k,+}^{0}, \quad N_{k,-} \leq N_{k,-}^{0}
$$

because if the independent clock rings at a time s and $\left|\xi_{s}\right|=0$, then at s there is no jump.

Definition (Assumptions on the initial particle configuration)

$$
\begin{gathered}
\max _{x \in\left[0, \varepsilon^{-1}\right]}\left|\mathcal{A}_{\ell}(x, \xi)-\mathcal{A}_{\ell}^{\prime}\left(x, \rho_{\text {init }}\right)\right| \leq \varepsilon^{a} \\
\rho_{\text {init }} \in C\left([0,1], \mathbb{R}_{+}\right), \rho_{\text {init }}(r)=0, r \in\left[R_{0}, 1\right] \\
\left|\varepsilon R(\xi)-R_{0}\right| \leq \varepsilon^{a}
\end{gathered}
$$

$$
\mathcal{A}_{\ell}(x, \xi):=\frac{1}{\ell} \sum_{y=x}^{x+\ell-1} \xi(y), \quad \mathcal{A}_{\ell}^{\prime}(x, \rho)=\frac{1}{\varepsilon \ell} \int_{\varepsilon x}^{\varepsilon(x+\ell)} \rho(r) d r
$$

Thus the initial number of particles $\left|\xi_{0}\right|$ is bounded from below

$$
\left|\xi_{0}\right| \geq \varepsilon^{-1} \int_{0}^{1} \rho_{\text {init }}(r) d r-\varepsilon^{-1+a} \geq \varepsilon^{-1} C, \quad C>0
$$

Lemma

Given $T>0$ and $\gamma>0$ define
$\mathcal{G}=\left\{\left|N_{k,+}^{0}-\varepsilon^{-1} j \delta\right| \leq \varepsilon^{-\frac{1}{2}-\gamma} ;\left|N_{k,-}^{0}-\varepsilon^{-1} j \delta\right| \leq \varepsilon^{-\frac{1}{2}-\gamma}, \forall k \leq \delta^{-1} T\right\}$
In the good set \mathcal{G}, for all $k \leq \delta^{-1} T$

Thus the initial number of particles $\left|\xi_{0}\right|$ is bounded from below

$$
\left|\xi_{0}\right| \geq \varepsilon^{-1} \int_{0}^{1} \rho_{\text {init }}(r) d r-\varepsilon^{-1+a} \geq \varepsilon^{-1} C, \quad C>0
$$

Lemma

Given $T>0$ and $\gamma>0$ define
$\mathcal{G}=\left\{\left|N_{k,+}^{0}-\varepsilon^{-1} j \delta\right| \leq \varepsilon^{-\frac{1}{2}-\gamma} ;\left|N_{k,-}^{0}-\varepsilon^{-1} j \delta\right| \leq \varepsilon^{-\frac{1}{2}-\gamma}, \forall k \leq \delta^{-1} T\right\}$
In the good set \mathcal{G}, for all $k \leq \delta^{-1} T$

$$
N_{k,+}=N_{k,+}^{0}, \quad N_{k,-}=N_{k,-}^{0}
$$

and

$$
P[\mathcal{G}] \geq 1-c_{n} \varepsilon^{n}
$$

Inequalities.

Definition

- $\xi \leq \xi^{\prime}$ iff $F_{\varepsilon}(x ; \xi) \leq F_{\varepsilon}\left(x ; \xi^{\prime}\right)$ for all $x \in\left[0, \varepsilon^{-1}\right]$

$$
F_{\varepsilon}(x ; \xi):=\sum_{y \geq x} \xi(y)
$$

- The process $\left(\xi_{t}\right)_{t \geq 0}$ is stochastically \leq than the process $\left(\xi_{t}^{\prime}\right)_{t \geq 0}$ if they can be realized on a same probability space where the inequality holds pointwise (almost surely).

Theorem

for all k

Inequalities.

Definition

- $\xi \leq \xi^{\prime}$ iff $F_{\varepsilon}(x ; \xi) \leq F_{\varepsilon}\left(x ; \xi^{\prime}\right)$ for all $x \in\left[0, \varepsilon^{-1}\right]$

$$
F_{\varepsilon}(x ; \xi):=\sum_{y \geq x} \xi(y)
$$

- The process $\left(\xi_{t}\right)_{t \geq 0}$ is stochastically \leq than the process $\left(\xi_{t}^{\prime}\right)_{t \geq 0}$ if they can be realized on a same probability space where the inequality holds pointwise (almost surely).

Theorem

$$
\xi_{k \varepsilon^{-2} \delta}^{(\delta,-)} \leq \xi_{k \varepsilon^{-2} \delta} \leq \xi_{k \varepsilon^{-2} \delta}^{(\delta,+)}, \quad \text { for all } k
$$

Hydrodynamic limit for the approximating processes

$$
\mathcal{A}_{\ell}(x ; \xi):=\frac{1}{\ell} \sum_{y=x}^{x+\ell-1} \xi(y), \quad \ell=\varepsilon^{-b}, b \in(0,1)
$$

$\left\langle\xi_{t}\right\rangle=$ expectation

Theorem

Let b be suitably close to 1and $T>0$. Then for any $\zeta>0$ and and $n: n \delta \leq T$,

$$
\lim _{\varepsilon \rightarrow 0} P_{\xi}^{(\varepsilon)}\left[\max _{x \in\left[0, \varepsilon^{-1}-\ell\right]}\left|\mathcal{A}_{\ell}\left(x ; \xi_{n \varepsilon^{-2 \delta}}^{(\delta, \pm)}\right)-\mathcal{A}_{\ell}\left(x ;\left\langle\xi_{n \varepsilon^{-2 \delta}}^{(\delta, \pm)}\right\rangle\right)\right|>\zeta\right]=0
$$

$$
\lim _{\varepsilon \rightarrow 0}\left\langle\xi_{n \varepsilon}^{(\delta, \pm \delta}(\overline{ \pm})\right\rangle=S_{n \delta}^{(\delta, \pm)}(\rho)
$$

Hydrodynamic limit for the process

previous Theorem and

$$
\xi_{n \varepsilon^{-2 \delta}}^{(\delta,-)} \leq \xi_{n \varepsilon^{-2} \delta} \leq \xi_{n \varepsilon^{-2}}^{(\delta,+)}, \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0}\left\langle\xi_{n \varepsilon^{-2} \delta}^{(\delta, \pm)}\right\rangle=S_{n \delta}^{(\delta, \pm)}\left(\rho_{\mathrm{init}}\right)
$$

imply that

$$
S_{n \delta}^{(\delta,-)}\left(\rho_{\text {init }}\right) \leq S_{n \delta}^{(\delta,+)}\left(\rho_{\text {init }}\right)
$$

Theorem

There is a unique element ρ_{t} separating the barriers:

$$
S_{n \delta}^{(\delta,-)}\left(\rho_{\text {init }}\right) \leq \rho_{t} \leq S_{n \delta}^{(\delta,+)}\left(\rho_{\text {init }}\right)
$$

Such an element is equal to the hydrodynamic limit of $\left\{\xi_{t}\right\}$.

$$
\lim _{\varepsilon \rightarrow 0} P_{\xi}\left[\max _{x \in\left[0, \varepsilon^{-1}\right]}\left|\varepsilon F_{\varepsilon}\left(x ; \xi_{\varepsilon^{-2} t}\right)-F\left(\varepsilon x ; \rho_{t}\right)\right| \leq \zeta\right]=1
$$

- Monotonicity: as functions of $\delta, S_{n \delta}^{(\delta,-)}(\rho)$ is non decreasing and $S_{n \delta}^{(\delta,+)}(\rho)$ is non increasing: for all $\delta=k \delta^{\prime}$,

$$
S_{m \delta}^{(\delta,-)}(\rho) \leq S_{m \delta}^{\left(\delta^{\prime},-\right)}(\rho), \quad S_{m \delta}^{\left(\delta^{\prime},+\right)}(\rho) \leq S_{m \delta}^{(\delta,+)}(\rho)
$$

- Regularity. $S_{t}^{(\delta,+)}(\rho), t \in \delta \mathbb{N}$ is space-time equicontinuous.
- Closeness. For all $t>0$

$$
\left|S_{t}^{(\delta,+)}(u)-S_{t}^{(\delta,-)}(u)\right|_{1} \leq 4 j \delta, \quad \text { for all } t>0 \text { in } \delta \mathbb{N}
$$

$|\cdot|_{1}$ is the total variation norm
(It follows from: $\left|K^{(\delta)} u-K^{(\delta)} v\right|_{1} \leq|u-v|_{1} ;\left|K^{(\delta)} u-u\right| \leq 2 j \delta$, $\left.\left|G_{\delta}^{\text {neum }} u-G_{\delta}^{\text {neum }} v\right|_{1} \leq|u-v|_{1}\right)$.

Stationary macroscopic profiles.

$$
\begin{aligned}
& 0=\frac{1}{2} \frac{\partial^{2} \rho}{\partial r^{2}}, \quad \rho(R)=0,\left.\frac{\partial \rho}{\partial r}\right|_{r=0^{+}}=\left.\frac{\partial \rho}{\partial r}\right|_{r=R^{-}}=-2 j \\
& \int_{0}^{1} \rho=M
\end{aligned}
$$

Figure : Stationary solution for $M<j, r \in[0,1]$

Figure : Stationary solution for $M>j, r \in[0,1]$

Manifold of stationary macroscopic profiles.

$\mathcal{M}:=\left\{\rho^{(M)}, M>0\right\}$ one-dimensional manifold of classical stationary solutions.

$$
\begin{gathered}
\rho^{(M)}(r)=\left\{\begin{array}{ll}
2 j(R-r), & R \leq 1 \\
0 & r>R
\end{array}, \quad \int_{0}^{1} \rho^{(M)}(r) d r=M \leq j\right. \\
\rho^{(M)}(r)=2 j(1-r)+\rho^{(M)}(1), \quad \int \rho^{(M)}=M>j
\end{gathered}
$$

Stability of the manifold of stationary profiles.

Theorem

Let $\int_{0}^{1} \rho_{\text {init }}(r) d r=M$ and ρ_{t} the hydro-limit starting from $\rho_{\text {init }}$.
Then, as $t \rightarrow \infty, \rho_{t}$ converges weakly to $\rho^{(M)}$ in the sense that

$$
\lim _{t \rightarrow \infty} F\left(r ; \rho_{t}\right)=F\left(r ; \rho^{(M)}\right), \quad \forall r \in[0,1]
$$

$F(r ; u)=\int_{r}^{1} u(r) d r$

Proof : loss of memory.

Two initial configurations ξ and $\tilde{\xi}$ with $|\xi|=|\tilde{\xi}|=n$
ξ approximates $\rho_{\text {init }}$ and $\tilde{\xi}$ approximates $\rho^{(M)}$
Coupling of the two processes $\left\{\xi_{t}\right\}$ and $\left\{\tilde{\xi}_{t}\right\}$,

- For the free evolution we label the particles and consider n independent random walks starting from \underline{x} and n independent r.w. starting from y with the rule that when particles with same label meet they stick together then after.
- Births are easy since the position of the born particles is the origin for both processes and so they stick together forever.
- For the deaths there is a way to relabel the particles so that the distance between the position of particles with same label decreases.

Proof : loss of memory.

Two initial configurations ξ and $\tilde{\xi}$ with $|\xi|=|\tilde{\xi}|=n$
ξ approximates $\rho_{\text {init }}$ and $\tilde{\xi}$ approximates $\rho^{(M)}$
Coupling of the two processes $\left\{\xi_{t}\right\}$ and $\left\{\tilde{\xi}_{t}\right\}$,

- For the free evolution we label the particles and consider n independent random walks starting from \underline{x} and n independent r.w. starting from y with the rule that when particles with same label meet they stick together then after.
- Births are easy since the position of the born particles is the origin for both processes and so they stick together forever.

[^0]Two initial configurations ξ and $\tilde{\xi}$ with $|\xi|=|\tilde{\xi}|=n$ ξ approximates $\rho_{\text {init }}$ and $\tilde{\xi}$ approximates $\rho^{(M)}$
Coupling of the two processes $\left\{\xi_{t}\right\}$ and $\left\{\tilde{\xi}_{t}\right\}$,

- For the free evolution we label the particles and consider n independent random walks starting from \underline{x} and n independent r.w. starting from y with the rule that when particles with same label meet they stick together then after.
- Births are easy since the position of the born particles is the origin for both processes and so they stick together forever.
- For the deaths there is a way to relabel the particles so that the distance between the position of particles with same label decreases.

Super-hydrodynamic limit

Hydrodynamic limit: $\xi_{\varepsilon^{-2} t} \rightarrow \rho_{t}$ in the limit $\varepsilon \rightarrow 0$ keeping t fixed.
$\rho_{t} \rightarrow \rho^{(M)}$ in the limi
limits in not allowed!.
There is a second time scale.

Total number $\left|\xi_{t}\right|$ of particles at time t performs a symmetric random walk with jumps by ± 1 at rate εj.

The density $\varepsilon\left|\xi_{t}\right|$ changes after times of the order ε^{-3}.

Super-hydrodynamic limit

Hydrodynamic limit: $\xi_{\varepsilon^{-2} t} \rightarrow \rho_{t}$ in the limit $\varepsilon \rightarrow 0$ keeping t fixed.

$$
\rho_{t} \rightarrow \rho^{(M)} \text { in the limit } t \rightarrow \infty
$$

Interchange of limits in not allowed!.
There is a second time scale.

Total number $\left|\xi_{t}\right|$ of particles at time t performs a symmetric random walk with jumps by ± 1 at rate εj.

The density $\varepsilon\left|\xi_{t}\right|$ changes after times of the order ε^{-3}.

Super-hydrodynamic limit

Hydrodynamic limit: $\xi_{\varepsilon^{-2} t} \rightarrow \rho_{t}$ in the limit $\varepsilon \rightarrow 0$ keeping t fixed.

$$
\rho_{t} \rightarrow \rho^{(M)} \text { in the limit } t \rightarrow \infty
$$

Interchange of limits in not allowed!.
There is a second time scale.

Total number $\left|\xi_{t}\right|$ of particles at time t performs a symmetric random walk with jumps by ± 1 at rate εj.

The density $\varepsilon\left|\xi_{t}\right|$ changes after times of the order ε^{-3}.

Super-hydrodynamic limit

Hydrodynamic limit: $\xi_{\varepsilon^{-2} t} \rightarrow \rho_{t}$ in the limit $\varepsilon \rightarrow 0$ keeping t fixed.

$$
\rho_{t} \rightarrow \rho^{(M)} \text { in the limit } t \rightarrow \infty
$$

Interchange of limits in not allowed!.
There is a second time scale.

Total number $\left|\xi_{t}\right|$ of particles at time t performs a symmetric random walk with jumps by ± 1 at rate εj.
The density $\varepsilon\left|\xi_{t}\right|$ changes after times of the order ε^{-3}.

Brownian motion on the manifold of stationary profiles

Theorem
Let $M_{t}^{\varepsilon}:=\varepsilon\left|\xi_{\varepsilon-3 t}\right|$ then for any $r \in[0,1]$ and any $t>0$,

$$
\lim _{\varepsilon \rightarrow 0} P_{\xi}^{(\varepsilon)}\left[\sup _{r \in[0,1]}\left|\varepsilon F_{\varepsilon}\left(r ; \xi_{\varepsilon^{-3} t}\right)-F\left(r ; \rho^{\left(M_{t}^{\varepsilon}\right)}\right)\right| \leq \zeta\right]=1
$$

Moreover M_{t}^{ε} converges in law as $\varepsilon \rightarrow 0$ to a brownian motion on \mathbb{R}_{+}with reflecting boundary conditions at 0 .

[^0]: - For the deaths there is a way to relabel the particles so that the distance between the position of particles with same label decreases.

