Voronoi diagram on a Riemannian manifold

Aurélie Chapron
Modal'X (Paris Ouest) and LMRS (Rouen)
16 sept 2016

Motivation

Aim : Show a link between mean characteristics of the Voronoi cells and local characteristics of the manifold

Framework

- M compact Riemannian manifold, with its Riemannian metric d,
- $d x$ volume element induced by the metric,
- Φ Poisson point process of intensity $\lambda d x$ and $x_{0} \in M$ added to Φ,
- The Voronoi cell of x_{0} defined by

$$
C\left(x_{0}, \Phi\right)=\left\{y \in M, d\left(x_{0}, y\right) \leq d(x, y), \forall x \in \Phi\right\}
$$

- N the number of vertices.

Outline

(1) Two-dimensional case
(2) Ongoing work on the dimension ≥ 3
(3) Probabilistic proof of Gauss-Bonnet theorem

Mean number of vertices on the sphere

wlog, assume x_{0} to be the North pole on the sphere of constant curvature K (of radius $\frac{1}{\sqrt{K}}$)

$$
\mathbb{E}[N(\mathcal{C})]=6-\frac{3 K}{\pi \lambda}+e^{-\frac{4 \pi \lambda}{K}}\left(\frac{3 K}{\pi \lambda}+6\right)
$$

Miles (1971) : n uniform points on the sphere

Strategy for a general surface

Get this kind of formula for an arbitrary surface

- Step 1: characterize vertices of \mathcal{C}
- Step 2: apply Mecke-Slivnyak formula
- Step 3: use geodesic polar coordinates
- Step 4: make a Blaschke-Petkantschin type change of variables
- Step 5: find the volume of a geodesic ball
image:R.Kunze

Sketch of proof

Step 1: characterize vertices of \mathcal{C}

Sketch of proof

$$
\mathbb{E}[N(\mathcal{C})]=\mathbb{E}\left[\sum_{x_{1}, x_{2} \in \Phi \text { circumscribed balls }} \mathbb{1}_{\left\{\mathcal{B}\left(x_{0}, x_{1}, x_{2}\right) \cap \Phi=\emptyset\right\}}\right]
$$

Step 1: characterize vertices of \mathcal{C}

Sketch of proof

$$
\mathbb{E}[N(\mathcal{C})]=\frac{\lambda^{2}}{2} \iint_{x_{1}, x_{2} \in M} \sum_{\text {circumscribed balls }} e^{-\lambda \text { vol }\left(\mathcal{B}\left(x_{0}, x_{1}, x_{2}\right)\right)} d x_{1} d x_{2}
$$

(1) Points "far" from x_{0} contribute negligibly.
(2) For points around x_{0}, only one circumscribed ball contributes.

Step 2: apply Mecke Slivnyak formula

Exponential map

Around x_{0}, M can always be parametrized by its geodesic polar coordinates (r, φ), ie

$$
x=\exp _{x_{0}}\left(r u_{\varphi}\right)
$$

Step 3: use geodesic polar coordinates

Rauch theorem

$$
d x=f(r, \varphi) d r d \varphi
$$

Let K denote the Gaussian curvature.

Rauch theorem (1951)

Si $0<\delta \leq K \leq \Delta$

$$
\frac{\sin (\sqrt{\Delta} r)}{\sqrt{\Delta}} \leq f(r, \varphi) \leq \frac{\sin (\sqrt{\delta} r)}{\sqrt{\delta}}
$$

Application: $\delta=K\left(x_{0}\right)-\varepsilon, \Delta=K\left(x_{0}\right)+\varepsilon$

Step 3: use geodesic polar coordinates

Sketch of proof

$$
\begin{aligned}
E[N(\mathcal{C})] & =\frac{\lambda^{2}}{2} \int_{\substack{\left(r_{1}, \varphi_{1}\right) \\
\left(r_{2}, \varphi_{2}\right)}} e^{-\lambda \operatorname{vol}\left(\mathcal{B}\left(x_{0}, x_{1}, x_{2}\right)\right)} \\
& \times\left(r_{1}-\frac{K\left(x_{0}\right) r_{1}^{3}}{6}+o\left(r_{1}^{3}\right)\right)\left(r_{2}-\frac{K\left(x_{0}\right) r_{2}^{3}}{6}+o\left(r_{2}^{3}\right)\right) d r_{1} d \varphi_{1} d r_{2} d \varphi_{2}+O\left(e^{-c \lambda}\right)
\end{aligned}
$$

Step 3: use geodesic polar coordinates

Sketch of proof

$$
\begin{aligned}
& r_{1}=? \\
& r_{2}=? \\
& \varphi_{1}=? \\
& \varphi_{2}=?
\end{aligned}
$$

Step 4: make a Blaschke-Petkantschin type change of variables

Toponogov theorem

If $\delta \leq K \leq \Delta$

Step 4: make a Blaschke-Petkantschin type change of variables

Sketch of proof

Step 4: make a Blaschke-Petkantschin type change of variables

Sketch of proof

$$
\mathbb{E}[N(\mathcal{C})]=2 \lambda^{2} I \int_{\varphi} \int_{R} e^{-\lambda \operatorname{vol}(\mathcal{B}(z, R))}\left(R^{3}-\frac{K\left(x_{0}\right) R^{5}}{2}+o\left(R^{5}\right)\right) d R d \varphi+O\left(e^{-c \lambda}\right)
$$

where

$$
I=\int_{\theta_{1}, \theta_{2}} \sin \left(\frac{\theta_{1}}{2}\right) \sin \left(\frac{\theta_{2}}{2}\right)\left|\sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)\right| d \theta_{1} d \theta_{2}
$$

Step 4: make a Blaschke-Petkantschin type change of variables

Volume of small geodesic balls

Bertrand-Diquet-Puiseux theorem (1848)

When $R \rightarrow 0, x \in S$

$$
\operatorname{vol}(\mathcal{B}(z, R))=\pi R^{2}-\frac{K(z) \pi}{12} R^{4}+o\left(R^{4}\right)
$$

Step 5: find the volume of the circumscribed ball

Result

$$
\mathbb{E}[N(\mathcal{C})]=12 \pi^{2} \lambda^{2} \int_{0}^{R_{\max }} e^{-\lambda\left(\pi R^{2}-\frac{\pi K\left(x_{0}\right) R^{4}}{12}+o\left(R^{4}\right)\right)} \times\left[R^{3}-\frac{K\left(x_{0}\right) R^{5}}{2}+o\left(R^{5}\right)\right] d R+O\left(e^{-c \lambda}\right)
$$

When λ goes to infinity, Laplace's method yields

Mean number of vertices

$$
\mathbb{E}[N(\mathcal{C})]=6-\frac{3 K\left(x_{0}\right)}{\pi \lambda}+o\left(\frac{1}{\lambda}\right)
$$

The dimension n

The vertices of \mathcal{C}

The n-sphere of constant sectional curvature K

The Jacobian of the
Blaschke-Petkantschin type change of variables (Miles 1971):
$J=n!\Delta\left(x_{0}, x_{1}, \ldots, x_{n}\right)\left(\frac{\sin (\sqrt{K} R)}{\sqrt{K}}\right)^{n^{2}-1}$
The volume of a ball of radius R in $\mathcal{S}^{n}(K)$:

$$
V(R)=\frac{2 \pi^{\frac{1}{2}}}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{R} \sin ^{n-1}(t) d t
$$

$$
\Delta\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

The n-sphere of constant sectional curvature K

Mean number of vertices

$$
\mathbb{E}[N(\mathcal{C})]=E_{n}-\frac{\mathrm{Sc}}{\lambda^{\frac{2}{n}}} C_{n}+o\left(\frac{1}{\lambda^{\frac{2}{n}}}\right)
$$

where

- E_{n} is the mean number of vertices in \mathbb{R}^{n}
- C_{n} is a positive constant
- Sc $=n(n-1) K$ is the scalar curvature of $\mathcal{S}^{n}(K)$

$$
\begin{aligned}
& E_{n}=2 \pi^{\frac{n-1}{2}} n^{n-2}\left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}\right)^{n} \frac{\Gamma\left(\frac{n^{2}+1}{2}\right)}{\Gamma\left(\frac{n^{2}}{2}\right)} \\
& C_{n}=\frac{2^{1-\frac{2}{n}}}{6 n!} \pi^{\frac{n}{2}-\frac{3}{2}} \frac{n^{3}-2}{(n-1)(n+2)} n^{n+\frac{2}{n}-2} \frac{\Gamma\left(n+\frac{2}{n}\right) \Gamma\left(\frac{n}{2}\right)^{n+\frac{2}{n}} \Gamma\left(\frac{n^{2}+1}{2}\right)}{\Gamma\left(\frac{n^{2}}{2}\right) \Gamma\left(\frac{n+1}{2}\right)^{n}}
\end{aligned}
$$

Generalization to a n-manifold M

The Blaschke Petkantschin type change of variables is written as

$$
x_{i}=\exp _{\mid \exp _{x_{0}}\left(R u_{\varphi}\right)}\left(R u_{i}\right)
$$

- The Jacobian of this change of variables involves Jacobi fields

Jacobi fields

- The Jacobian is

$$
J=n!\Delta\left(x_{0}, x_{1}, \ldots, x_{n}\right) \prod_{i=1}^{n} \prod_{k=1}^{n-1}\left\|J_{i}^{k}(R)\right\| \cdot \prod_{j=1}^{n-1}\left\|J_{j}(R)\right\|
$$

- Rauch theorem gives an asymptotic expansion of J

Volume of small geodesic balls

An expansion of the volume of a small geodesic ball on M is given by

$$
\operatorname{vol}(\mathcal{B}(z, R))=\kappa_{n} R^{n}\left(1-\frac{\operatorname{Sc}(z)}{6(n+2)} R^{2}+o\left(R^{2}\right)\right)
$$

Generalization to a n-manifold M

Mean number of vertices

$$
\mathbb{E}[N(\mathcal{C})]=E_{n}-\frac{\operatorname{Sc}\left(x_{0}\right)}{\lambda^{\frac{2}{n}}} C_{n}+o\left(\frac{1}{\lambda^{\frac{2}{n}}}\right)
$$

with

- E_{n} and C_{n} the same constants as for the sphere
- $\operatorname{Sc}\left(x_{0}\right)$ is the scalar curvature of M at x_{0}

$$
\begin{aligned}
& E_{n}=2 \pi^{\frac{n-1}{2}} n^{n-2}\left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)}\right)^{n} \frac{\Gamma\left(\frac{n^{2}+1}{2}\right)}{\Gamma\left(\frac{n^{2}}{2}\right)} \\
& C_{n}=\frac{2^{1-\frac{2}{n}}}{6 n!} \pi^{\frac{n}{2}-\frac{3}{2}} \frac{n^{3}-2}{(n-1)(n+2)} n^{n+\frac{2}{n}-2} \frac{\Gamma\left(n+\frac{2}{n}\right) \Gamma\left(\frac{n}{2}\right)^{n+\frac{2}{n}} \Gamma\left(\frac{n^{2}+1}{2}\right)}{\Gamma\left(\frac{n^{2}}{2}\right) \Gamma\left(\frac{n+1}{2}\right)^{n}}
\end{aligned}
$$

Euler characteristic and Gauss-Bonnet theorem

S compact surface without boundary
Gauss-Bonnet theorem

$$
2 \pi \chi(S)=\int_{x \in S} K(x) d x
$$

For any graph on S,

$$
\chi(S)=V-E+F
$$

V : vertices, E : edges, F : faces

Euler characteristic and Gauss-Bonnet theorem

S compact surface without boundary

Gauss-Bonnet theorem

$$
2 \pi \chi(S)=\int_{x \in S} K(x) d x
$$

For any random graph on S,

$$
\chi(S)=\mathbb{E}[V]-\mathbb{E}[E]+\mathbb{E}[F]
$$

V : vertices, E : edges, F : faces

For the Voronoi diagram

In any Voronoi diagram,

- Each vertex is in three cells
- Each edge is in two cells

So we have the relation $3 V=2 E$

$$
\chi(S)=\mathbb{E}[F]-\frac{1}{2} \mathbb{E}[V]
$$

Expression of $\mathbb{E}[V]$ and $\mathbb{E}[F]$

$$
3 \mathbb{E}[V]=\mathbb{E}\left[\sum_{C \text { cell }} N(C)\right]=\lambda \int_{x \in S} \mathbb{E}[N(C(x, \Phi \cup\{x\}))] d x
$$

$$
\mathbb{E}[N(C(x, \Phi \cup\{x\}))]=6-\frac{3 K(x)}{\pi \lambda}+o\left(\frac{1}{\lambda}\right)
$$

$$
\begin{gathered}
\mathbb{E}[V]=2 \lambda \operatorname{vol}(S)-\frac{1}{\pi} \int_{x \in S} K(x) d x+o(1) \\
\mathbb{E}[F]=\lambda \operatorname{vol}(S)
\end{gathered}
$$

Gauss-Bonnet theorem

$$
\chi(S)=\frac{1}{2 \pi} \int_{x \in S} K(x) d x
$$

Take Home Message

- Dimension 2:
\hookrightarrow Link between mean number of vertices and Gaussian curvature
\hookrightarrow Result available for surface of negative curvature (Isokawa 2000)
\hookrightarrow Other mean characteristics: area, perimeter
\hookrightarrow Elementary proof of Gauss-Bonnet theorem
- Dimension n :
\hookrightarrow Link between mean number of vertices and scalar curvature
\hookrightarrow Perspectives: other characteristics to get other curvatures, Gauss-Bonnet type results
\hookrightarrow...

Thank you for your attention!

